Votre recherche
Résultats 8 ressources
-
Abstract Several types of precipitation, such as freezing rain, ice pellets, and wet snow, are commonly observed during winter storms. The objective of this study is to better understand the formation of these winter precipitation types. To address this issue, detailed melting and refreezing of precipitation was added onto an existing bulk microphysics scheme. These modifications allow the formation of mixed-phase particles and these particles in turn lead to, or affect, the formation of many of the other types of precipitation. The precipitation type characteristics, such as the mass content, liquid fraction, and threshold diameters formed during a storm over St John’s, Newfoundland, Canada, are studied and compared with observations. Many of these features were reproduced by the model. Sensitivity experiments with the model were carried out to examine the dependence of precipitation characteristics in this event on thresholds of particle evolution in the new parameterization.
-
Abstract This article examines the types of winter precipitation that occur near 0°C, specifically rain, freezing rain, freezing drizzle, ice pellets, snow pellets, and wet snow. It follows from a call by M. Ralph et al. for more attention to be paid to this precipitation since it represents one of the most serious wintertime quantitative precipitation forecasting (QPF) issues. The formation of the many precipitation types involves ice-phase and/or liquid-phase processes, and thresholds in the degree of melting and/or freezing often dictate the types occurring at the surface. Some types can occur simultaneously so that, for example, ensuing collisions between supercooled raindrops and ice pellets that form ice pellet aggregates can lead to substantial reductions in the occurrence of freezing rain at the surface, and ice crystal multiplication processes can lead to locally produced ice crystals in the subfreezing layer below inversions. Highly variable fall velocities within the background temperature and wind fields of precipitation-type transition regions lead to varying particle trajectories and significant alterations in the distribution of precipitation amount and type at the surface. Physically based predictions that account for at least some of the phase changes and particle interactions are now in operation. Outstanding issues to be addressed include the impacts of accretion on precipitation-type formation, quantification of melting and freezing rates of the highly variable precipitation, the consequences of collisions between the various types, and the onset of ice nucleation and its effects. The precipitation physics perspective of this article furthermore needs to be integrated into a comprehensive understanding involving the surrounding and interacting environment.
-
Abstract The phase of precipitation formed within the atmosphere is highly dependent on the vertical temperature profile through which it falls. In particular, several precipitation types can form in an environment with a melting layer aloft and a refreezing layer below. These precipitation types include freezing rain, ice pellets, wet snow, and slush. To examine the formation of such precipitation, a bulk microphysics scheme was used to compare the characteristics of the hydrometeors produced by the model and observed by a research aircraft flight during the 1998 ice storm near Montreal, Canada. The model reproduced several of the observed key precipitation characteristics. Sensitivity tests on the precipitation types formed during the ice storm were also performed. These tests utilized temperature profiles produced by the North American Regional Reanalysis. The results show that small variations (±0.5°C) in the temperature profiles as well as in the precipitation rate can have major impacts on the types of precipitation formed at the surface. These results impose strong requirements on the accuracy needed by prediction models.
-
Abstract. Precipitation events that bring rain and snow to the Banff–Calgary area of Alberta are a critical aspect of the region's water cycle and can lead to major flooding events such as the June 2013 event that was the second most costly natural disaster in Canadian history. Because no special atmospheric-oriented observations of these events have been made, a field experiment was conducted in March and April 2015 in Kananaskis, Alberta, to begin to fill this gap. The goal was to characterize and better understand the formation of the precipitation at the surface during spring 2015 at a specific location in the Kananaskis Valley. Within the experiment, detailed measurements of precipitation and weather conditions were obtained, a vertically pointing Doppler radar was deployed and weather balloons were released. Although 17 precipitation events occurred, this period was associated with much less precipitation than normal (−35 %) and above-normal temperatures (2.5 ∘C). Of the 133 h of observed precipitation, solid precipitation occurred 71 % of the time, mixed precipitation occurred 9 % and rain occurred 20 %. An analysis of 17 504 precipitation particles from 1181 images showed that a wide variety of crystals and aggregates occurred and approximately 63 % showed signs of riming. This was largely independent of whether flows aloft were upslope (easterly) or downslope (westerly). In the often sub-saturated surface conditions, hydrometeors containing ice occurred at temperatures as high as 9 ∘C. Radar structures aloft were highly variable with reflectivity sometimes >30 dBZe and Doppler velocity up to −1 m s−1, which indicates upward motion of particles within ascending air masses. Precipitation was formed in this region within cloud fields sometimes having variable structures and within which supercooled water at least sometimes existed to produce accreted particles massive enough to reach the surface through the relatively dry sub-cloud region.
-
Abstract A devastating, flood-producing rainstorm occurred over southern Alberta, Canada, from 19 to 22 June 2013. The long-lived, heavy rainfall event was a result of complex interplays between topographic, synoptic, and convective processes that rendered an accurate simulation of this event a challenging task. In this study, the Weather Research and Forecasting (WRF) Model was used to simulate this event and was validated against several observation datasets. Both the timing and location of the model precipitation agree closely with the observations, indicating that the WRF Model is capable of reproducing this type of severe event. Sensitivity tests with different microphysics schemes were conducted and evaluated using equitable threat and bias frequency scores. The WRF double-moment 6-class microphysics scheme (WDM6) generally performed better when compared with other schemes. The application of a conventional convective/stratiform separation algorithm shows that convective activity was dominant during the early stages, then evolved into predominantly stratiform precipitation later in the event. The HYSPLIT back-trajectory analysis and regional water budget assessments using WRF simulation output suggest that the moisture for the precipitation was mainly from recycling antecedent soil moisture through evaporation and evapotranspiration over the Canadian Prairies and the U.S. Great Plains. This analysis also shows that a small fraction of the moisture can be traced back to the northeastern Pacific, and direct uptake from the Gulf of Mexico was not a significant source in this event.
-
Abstract. The Interior of Western Canada, up to and including the Arctic, has experienced rapid change in its climate, hydrology, cryosphere and ecosystems and this is expected to continue. Although there is general consensus that warming will occur in the future, many critical issues remain. In this first of two articles, attention is placed on atmospheric-related issues that range from large scales down to individual precipitation events. Each of these is considered in terms of expected change organized by season and utilizing climate scenario information as well as thermodynamically-driven future climatic forcing simulations. Large scale atmospheric circulations affecting this region are generally projected to become stronger in each season and, coupled with warming temperatures, lead to enhancements of numerous water-related and temperature-related extremes. These include winter snowstorms, freezing rain, drought as well as atmospheric forcing of spring floods although not necessarily summer convection. Collective insights of these atmospheric findings are summarized in a consistent, connected physical framework.