Votre recherche
Résultats 2 ressources
-
Abstract The contraction of species range is one of the most significant symptoms of biodiversity loss worldwide. While anthropogenic activities and habitat alteration are major threats for several species, climate change should also be considered. For species at risk, differentiating the effects of human disturbances and climate change on past and current range transformations is an important step towards improved conservation strategies. We paired historical range maps with global atmospheric reanalyses from different sources to assess the potential effects of recent climate change on the observed northward contraction of the range of boreal populations of woodland caribou ( Rangifer tarandus caribou ) in Quebec (Canada) since 1850. We quantified these effects by highlighting the discrepancies between different southern limits of the caribou's range (used as references) observed in the past and reconstitutions obtained through the hindcasting of the climate conditions within which caribou are currently found. Hindcasted southern limits moved ~105 km north over time under all reanalysis datasets, a trend drastically different from the ~620 km reported for observed southern limits since 1850. The differences in latitudinal shift through time between the observed and hindcasted southern limits of distribution suggest that caribou range recession should have been only 17% of what has been observed since 1850 if recent climate change had been the only disturbance driver. This relatively limited impact of climate reinforces the scientific consensus stating that caribou range recession in Quebec is mainly caused by anthropogenic drivers (i.e. logging, development of the road network, agriculture, urbanization) that have modified the structure and composition of the forest over the past 160 years, paving the way for habitat‐mediated apparent competition and overharvesting. Our results also call for a reconsideration of past ranges in models aiming at projecting future distributions, especially for endangered species.
-
The 2023 wildfire season in Québec set records due to extreme warm and dry conditions, burning 4.5 million hectares and indicating persistent and escalating impacts associated with climate change. This study reviews the unusual weather conditions that led to the fires, discussing their extensive impacts on the forest sector, fire management, boreal caribou habitats, and particularly the profound effects on First Nation communities. The wildfires led to significant declines in forest productivity and timber supply, overwhelming fire management resources, and necessitating widespread evacuations. First Nation territories were dramatically altered, facing severe air quality issues and disruptions. While caribou impacts were modest across the province, the broader ecological, economical, and social repercussions were considerable. To mitigate future extreme wildfire seasons, the study suggests changes in forest management practices to increase forest resilience and resistance, adapting industrial structures to changes in wood type harvested, and enhancing fire suppression and risk management strategies. It calls for a comprehensive, unified approach to risk management that incorporates the lessons learned from the 2023 fire season and accounts for ongoing climate change. The studyunderscores the urgent need for detailed planning and proactive measures to reduce the growing risks and impacts of wildfires in a changing climate.