Votre recherche
Résultats 12 ressources
-
Abstract Forest soils play an important role in controlling global warming by reducing atmospheric methane (CH 4 ) concentrations. However, little attention has been paid to how nitrogen (N) deposition may alter microorganism communities that are related to the CH 4 cycle or CH 4 oxidation in subtropical forest soils. We investigated the effects of N addition (0, 30, 60, or 90 kg N ha −1 yr −1 ) on soil CH 4 flux and methanotroph and methanogen abundance, diversity, and community structure in a Moso bamboo ( Phyllostachys edulis ) forest in subtropical China. N addition significantly increased methanogen abundance but reduced both methanotroph and methanogen diversity. Methanotroph and methanogen community structures under the N deposition treatments were significantly different from those of the control. In N deposition treatments, the relative abundance of Methanoculleus was significantly lower than that in the control. Soil pH was the key factor regulating the changes in methanotroph and methanogen diversity and community structure. The CH 4 emission rate increased with N addition and was negatively correlated with both methanotroph and methanogen diversity but positively correlated with methanogen abundance. Overall, our results suggested that N deposition can suppress CH 4 uptake by altering methanotroph and methanogen abundance, diversity, and community structure in subtropical Moso bamboo forest soils.
-
Abstract Background It is still not clear whether the effects of N deposition on soil greenhouse gas (GHG) emissions are influenced by plantation management schemes. A field experiment was conducted to investigate the effects of conventional management (CM) versus intensive management (IM), in combination with simulated N deposition levels of control (ambient N deposition), 30 kg N·ha − 1 ·year − 1 (N30, ambient + 30 kg N·ha − 1 ·year − 1 ), 60 kg N·ha − 1 ·year − 1 (N60, ambient + 60 kg N·ha − 1 ·year − 1 ), or 90 kg N·ha − 1 ·year − 1 (N90, ambient + 90 kg N·ha − 1 ·year − 1 ) on soil CO 2 , CH 4 , and N 2 O fluxes. For this, 24 plots were set up in a Moso bamboo ( Phyllostachys edulis ) plantation from January 2013 to December 2015. Gas samples were collected monthly from January 2015 to December 2015. Results Compared with CM, IM significantly increased soil CO 2 emissions and their temperature sensitivity ( Q 10 ) but had no significant effects on soil CH 4 uptake or N 2 O emissions. In the CM plots, N30 and N60 significantly increased soil CO 2 emissions, while N60 and N90 significantly increased soil N 2 O emissions. In the IM plots, N30 and N60 significantly increased soil CO 2 and N 2 O emissions, while N60 and N90 significantly decreased soil CH 4 uptake. Overall, in both CM and IM plots, N30 and N60 significantly increased global warming potentials, whereas N90 did not significantly affect global warming potential. However, N addition significantly decreased the Q 10 value of soil CO 2 emissions under IM but not under CM. Soil microbial biomass carbon was significantly and positively correlated with soil CO 2 and N 2 O emissions but significantly and negatively correlated with soil CH 4 uptake. Conclusion Our results indicate that management scheme effects should be considered when assessing the effect of atmospheric N deposition on GHG emissions in bamboo plantations.
-
Abstract Ecosystem-level effects of increasing atmospheric nitrogen (N) deposition on the phosphorus (P) cycle and P use strategy are poorly understood. Here, we conducted a seven year N-addition experiment to comprehensively evaluate the effects of N deposition on P limitation, cycling, and use strategy in a subtropical Moso bamboo forest. N addition significantly increased foliar litterfall by 4.7%–21.7% and subsequent P return to the soil by 49.0%–70.1%. It also increased soil acidity, acid phosphatase activity, and soil microbial biomass P, which substantially contributed to a significantly increased soil P availability and largely alleviated the P limitation. This resulted in a significant decrease in the foliar P-resorption efficiency and the abundance and colonization of arbuscular mycorrhizal fungi. Our results indicate that N deposition can reduce plant internal cycling while enhancing ecosystem-scale cycling of P in Moso bamboo forests. This suggests a shift in P use from a ‘conservative consumption’ strategy to a ‘resource spending’ strategy. Our findings shed new light on N deposition effects on P cycle processes and P use strategy at the ecosystem scale under increasing atmospheric N deposition.
-
Abstract The effects of nitrogen (N) deposition on soil organic carbon (C) and greenhouse gas (GHG) emissions in terrestrial ecosystems are the main drivers affecting GHG budgets under global climate change. Although many studies have been conducted on this topic, we still have little understanding of how N deposition affects soil C pools and GHG budgets at the global scale. We synthesized a comprehensive dataset of 275 sites from multiple terrestrial ecosystems around the world and quantified the responses of the global soil C pool and GHG fluxes induced by N enrichment. The results showed that the soil organic C concentration and the soil CO 2 , CH 4 and N 2 O emissions increased by an average of 3.7%, 0.3%, 24.3% and 91.3% under N enrichment, respectively, and that the soil CH 4 uptake decreased by 6.0%. Furthermore, the percentage increase in N 2 O emissions (91.3%) was two times lower than that (215%) reported by Liu and Greaver ( Ecology Letters , 2009, 12:1103–1117). There was also greater stimulation of soil C pools (15.70 kg C ha −1 year −1 per kg N ha −1 year −1 ) than previously reported under N deposition globally. The global N deposition results showed that croplands were the largest GHG sources (calculated as CO 2 equivalents), followed by wetlands. However, forests and grasslands were two important GHG sinks. Globally, N deposition increased the terrestrial soil C sink by 6.34 Pg CO 2 /year. It also increased net soil GHG emissions by 10.20 Pg CO 2 ‐Geq (CO 2 equivalents)/year. Therefore, N deposition not only increased the size of the soil C pool but also increased global GHG emissions, as calculated by the global warming potential approach.
-
Methane (CH4) is one of the three most important greenhouse gases. To date, observations of ecosystem-scale methane (CH4) fluxes in forests are currently lacking in the global CH4 budget. The environmental factors controlling CH4 flux dynamics remain poorly understood at the ecosystem scale. In this study, we used a state-of-the-art eddy covariance technique to continuously measure the CH4 flux from 2016 to 2018 in a subtropical forest of Zhejiang Province in China, quantify the annual CH4 budget and investigate its control factors. We found that the total annual CH4 budget was 1.15 ± 0.28~4.79 ± 0.49 g CH4 m−2 year−1 for 2017–2018. The daily CH4 flux reached an emission peak of 0.145 g m−2 d−1 during winter and an uptake peak of −0.142 g m−2 d−1 in summer. During the whole study period, the studied forest region acted as a CH4 source (78.65%) during winter and a sink (21.35%) in summer. Soil temperature had a negative relationship (p < 0.01; R2 = 0.344) with CH4 flux but had a positive relationship with soil moisture (p < 0.01; R2 = 0.348). Our results showed that soil temperature and moisture were the most important factors controlling the ecosystem-scale CH4 flux dynamics of subtropical forests in the Tianmu Mountain Nature Reserve in Zhejiang Province, China. Subtropical forest ecosystems in China acted as a net source of methane emissions from 2016 to 2018, providing positive feedback to global climate warming.
-
Moso bamboo forests have greater net carbon uptake benefits with increasing nitrogen deposition in the coming decades. , Atmospheric nitrogen (N) deposition affects the greenhouse gas (GHG) balance of ecosystems through the net atmospheric CO 2 exchange and the emission of non-CO 2 GHGs (CH 4 and N 2 O). We quantified the effects of N deposition on biomass increment, soil organic carbon (SOC), and N 2 O and CH 4 fluxes and, ultimately, the net GHG budget at ecosystem level of a Moso bamboo forest in China. Nitrogen addition significantly increased woody biomass increment and SOC decomposition, increased N 2 O emission, and reduced soil CH 4 uptake. Despite higher N 2 O and CH 4 fluxes, the ecosystem remained a net GHG sink of 26.8 to 29.4 megagrams of CO 2 equivalent hectare −1 year −1 after 4 years of N addition against 22.7 hectare −1 year −1 without N addition. The total net carbon benefits induced by atmospheric N deposition at current rates of 30 kilograms of N hectare −1 year −1 over Moso bamboo forests across China were estimated to be of 23.8 teragrams of CO 2 equivalent year −1 .
-
Abstract In forest ecosystems, the majority of methane (CH4) research focuses on soils, whereas tree stem CH4 flux and driving factors remain poorly understood. We measured the in situ stem CH4 flux using the static chamber–gas chromatography method at different heights in two poplar (Populus spp.) forests with separate soil textures. We evaluated the relationship between stem CH4 fluxes and environmental factors with linear mixed models and estimated the tree CH4 emission rate at the stand level. Our results showed that poplar stems were a net source of atmospheric CH4. The mean stem CH4 emission rates were 97.51 ± 6.21 μg·m−2·h−1 in Sihong and 67.04 ± 5.64 μg·m−2·h−1 in Dongtai. The stem CH4 emission rate in Sihong with clay loam soils was significantly higher (P < 0.001) than that in Dongtai with sandy loam soils. The stem CH4 emission rate also showed a seasonal variation, minimum in winter and maximum in summer. The stem CH4 emission rate generally decreased with increasing sampling height. Although the differences in CH4 emission rates between stem heights were significant in the annual averages, these differences were driven by differences observed in the summer. Stem CH4 emission rates were significantly and positively correlated with air temperature (P < 0.001), relative humidity (P < 0.001), soil water content (P < 0.001) and soil CH4 flux (P < 0.001). At these sites, the soil emitted CH4 to the atmosphere in summer (mainly from June to September) but absorbed CH4 from the atmosphere during the other season. At the stand level, tree CH4 emissions accounted for 2–35.4% of soil CH4 uptake. Overall, tree stem CH4 efflux could be an important component of the forest CH4 budget. Therefore, it is necessary to conduct more in situ monitoring of stem CH4 flux to accurately estimate the CH4 budget in the future.