Votre recherche
Résultats 14 ressources
-
Intense and frequent drought events strongly affect plant survival. Non-structural carbohydrates (NSCs) are important “buffers” to maintain plant functions under drought conditions. We conducted a drought manipulation experiment using three-year-old Pinus tabulaeformis Carr. seedlings. The seedlings were first treated under different drought intensities (i.e., no irrigation, severe, and moderate) for 50 days, and then they were re-watered for 25 days to explore the dynamics of NSCs in the leaves, twigs, stems, and roots. The results showed that the no irrigation and severe drought treatments significantly reduced photosynthetic rate by 93.9% and 32.6% for 30 days, respectively, leading to the depletion of the starch storage for hydraulic repair, osmotic adjustment, and plant metabolism. The seedlings under moderate drought condition also exhibited starch storage consumption in leaves and twigs. After re-watering, the reduced photosynthetic rate recovered to the control level within five days in the severe drought group but showed no sign of recovery in the no irrigation group. The seedlings under the severe and moderate drought conditions tended to invest newly fixed C to starch storage and hydraulic repair instead of growth due to the “drought legacy effect”. Our findings suggest the depletion and recovery of starch storage are important strategies for P. tabulaeformis seedlings, and they may play key roles in plant resistance and resilience under environmental stress.
-
Methane (CH4) is a vital greenhouse gas with a 28-fold higher global warming potential than carbon dioxide when considering a molar basis for the time horizon of 100 years. Here, we investigated the variation of soil CH4 fluxes, soil physiochemical properties, and CH4-related bacteria community composition of two forests in China. We measured CH4 fluxes using static chambers and analyzed soil bacterial communities using next-generation high-throughput sequencing in a temperate broad-leaved deciduous forest at Baotianman Nature Reserve (TBDF-BTM) and a tropical rainforest at Jianfengling National Natural Reserve (TRF-JFL). Our results showed that the soils from both sites were CH4 sinks. Significant variation in soil CH4 fluxes was found at TBDF-BTM exclusively, while no seasonal variation in the CH4 uptake was observed at TRF-JFL. The CH4 fluxes at TBDF-BTM were substantially higher than those at TRF-JFL during all seasons. One genus of methanotrophs and three genera of methylotrophs were detected at both sites, though they had no direct relationship with soil CH4 fluxes. Water-filled pore space and soil total carbon content are the main factors controlling the soil CH4 fluxes at TBDF-BTM. At TRF-JFL, the soil CH4 fluxes showed no significant correlations with any of the soil properties. This study improves our understanding of soil CH4 fluxes and their influencing factors in forests in different climatic zones and provides a reference for future investigation of forest soil CH4 fluxes, the forest ecosystem carbon cycle, and the forest CH4 model.
-
Abstract The increasing atmospheric nitrous oxide (N 2 O) concentration stems from the development of agriculture. However, N 2 O emissions from global rice‐based ecosystems have not been explicitly and systematically quantified. Therefore, this study aims to estimate the spatiotemporal magnitudes of the N 2 O emissions from global rice‐based ecosystems and determine different contribution factors by improving a process‐based biogeochemical model, TRIPLEX‐GHG v2.0. Model validation suggested that the modeled N 2 O agreed well with field observations under varying management practices at daily, seasonal, and annual steps. Simulated N 2 O emissions from global rice‐based ecosystems exhibited significant increasing trends from 0.026 ± 0.0013 to 0.18 ± 0.003 TgN yr −1 from 1910 to 2020, with ∼69.5% emissions attributed to the rice‐growing seasons. Irrigated rice ecosystems accounted for a majority of global rice N 2 O emissions (∼76.9%) because of their higher N 2 O emission rates than rainfed systems. Regarding spatial analysis, Southern China, Northeast India, and Southeast Asia are hotspots for rice‐based N 2 O emissions. Experimental scenarios revealed that N fertilizer is the largest global rice‐N 2 O source, especially since the 1960s (0.047 ± 0.010 TgN yr −1 , 35.24%), while the impact of expanded irrigation plays a minor role. Overall, this study provides a better understanding of the rice‐based ecosystem in the global agricultural N 2 O budget; further, it quantitively demonstrated the central role of N fertilizer in rice‐based N 2 O emissions by including rice crop calendars, covering non‐rice growing seasons, and differentiating the effects of various water regimes and input N forms. Our findings emphasize the significance of co‐management of N fertilizer and water regimes in reducing the net climate impact of global rice cultivation. , Plain Language Summary Nitrous oxide (N 2 O) is a greenhouse gas with ∼300 times greater effect on climate warming than carbon dioxide. Global croplands represent the largest source of anthropogenic N 2 O emissions. However, the contribution of global rice‐based cropping ecosystems to the N 2 O budget remains largely uncertain because of inconsistent observed results. Inspired by the increasing availability of reliable global data sets, we improved and applied a process‐based biogeochemical model by describing the dynamics of various microbial activities to simulate N 2 O emissions from rice‐based ecosystems on a global scale. Model simulations showed that 0.18 million tons of N 2 O‐N were emitted from global rice‐based N 2 O emissions in the 2010s, which was five times larger than that in the 1910s. In the context of regional contribution, southern China, northern India, and Southeast Asia are responsible for more than 80% of the total emissions during 1910–2020. Results suggest that N fertilizer is the most important rice‐N 2 O source quantitively and that increasing irrigation exerts a buffering effect. This study confirmed the potential mitigating effect of co‐managing N fertilizer and irrigation on mitigating rice‐based N 2 O emissions globally. , Key Points N 2 O emissions from global rice‐based ecosystem increased from 0.026 to 0.18 TgN yr −1 between 1910 and 2020 Irrigated rice‐based ecosystems showed larger N 2 O fluxes than rainfed rice globally due to higher N fertilizer use and frequent aerations N fertilizer represents the largest N 2 O source, and co‐management of N fertilizer and flooding regimes is important for mitigation
-
Abstract The increasing atmospheric nitrous oxide (N 2 O) concentration stems from the development of agriculture. However, N 2 O emissions from global rice‐based ecosystems have not been explicitly and systematically quantified. Therefore, this study aims to estimate the spatiotemporal magnitudes of the N 2 O emissions from global rice‐based ecosystems and determine different contribution factors by improving a process‐based biogeochemical model, TRIPLEX‐GHG v2.0. Model validation suggested that the modeled N 2 O agreed well with field observations under varying management practices at daily, seasonal, and annual steps. Simulated N 2 O emissions from global rice‐based ecosystems exhibited significant increasing trends from 0.026 ± 0.0013 to 0.18 ± 0.003 TgN yr −1 from 1910 to 2020, with ∼69.5% emissions attributed to the rice‐growing seasons. Irrigated rice ecosystems accounted for a majority of global rice N 2 O emissions (∼76.9%) because of their higher N 2 O emission rates than rainfed systems. Regarding spatial analysis, Southern China, Northeast India, and Southeast Asia are hotspots for rice‐based N 2 O emissions. Experimental scenarios revealed that N fertilizer is the largest global rice‐N 2 O source, especially since the 1960s (0.047 ± 0.010 TgN yr −1 , 35.24%), while the impact of expanded irrigation plays a minor role. Overall, this study provides a better understanding of the rice‐based ecosystem in the global agricultural N 2 O budget; further, it quantitively demonstrated the central role of N fertilizer in rice‐based N 2 O emissions by including rice crop calendars, covering non‐rice growing seasons, and differentiating the effects of various water regimes and input N forms. Our findings emphasize the significance of co‐management of N fertilizer and water regimes in reducing the net climate impact of global rice cultivation. , Plain Language Summary Nitrous oxide (N 2 O) is a greenhouse gas with ∼300 times greater effect on climate warming than carbon dioxide. Global croplands represent the largest source of anthropogenic N 2 O emissions. However, the contribution of global rice‐based cropping ecosystems to the N 2 O budget remains largely uncertain because of inconsistent observed results. Inspired by the increasing availability of reliable global data sets, we improved and applied a process‐based biogeochemical model by describing the dynamics of various microbial activities to simulate N 2 O emissions from rice‐based ecosystems on a global scale. Model simulations showed that 0.18 million tons of N 2 O‐N were emitted from global rice‐based N 2 O emissions in the 2010s, which was five times larger than that in the 1910s. In the context of regional contribution, southern China, northern India, and Southeast Asia are responsible for more than 80% of the total emissions during 1910–2020. Results suggest that N fertilizer is the most important rice‐N 2 O source quantitively and that increasing irrigation exerts a buffering effect. This study confirmed the potential mitigating effect of co‐managing N fertilizer and irrigation on mitigating rice‐based N 2 O emissions globally. , Key Points N 2 O emissions from global rice‐based ecosystem increased from 0.026 to 0.18 TgN yr −1 between 1910 and 2020 Irrigated rice‐based ecosystems showed larger N 2 O fluxes than rainfed rice globally due to higher N fertilizer use and frequent aerations N fertilizer represents the largest N 2 O source, and co‐management of N fertilizer and flooding regimes is important for mitigation
-
Atmospheric deposition of nitrogen (N) and phosphorus (P) far exceeding the pre-industrial levels have the potential to change carbon (C) dynamics in northern peatlands. However, the responses of soil C concentration and organo-chemical composition to different rates and durations of nutrient enrichment are still unclear. Here, we compared the short- (3 years) and long-term (10 years) effects of N and P fertilizations on the physicochemical properties of peat and porewater in a bog-fen complex in northern China. Our results showed that the short-term fertilization increased Sphagnum moss cover, while the expansion of vascular plants was observed owing to the long-term fertilization. The preserved soil C did not vary considerably after the short- and long-term fertilizations. The harsh soil conditions may impede the decomposition of organic matters by soil microorganisms during the short-term fertilization. For the long-term fertilization, the input of high-phenolic litters owing to vascular plant expansion likely exerted an important control on soil C dynamics. These processes constrained the variation in soil C concentrations when the addition rate and cumulative amount of external N and P increased, which will advance our understanding and prediction of the resilience of soil C storage to imbalanced nutrient enrichment of N and P in northern peatlands.
-
Atmospheric deposition of nitrogen (N) and phosphorus (P) far exceeding the pre-industrial levels have the potential to change carbon (C) dynamics in northern peatlands. However, the responses of soil C concentration and organo-chemical composition to different rates and durations of nutrient enrichment are still unclear. Here, we compared the short- (3 years) and long-term (10 years) effects of N and P fertilizations on the physicochemical properties of peat and porewater in a bog-fen complex in northern China. Our results showed that the short-term fertilization increased Sphagnum moss cover, while the expansion of vascular plants was observed owing to the long-term fertilization. The preserved soil C did not vary considerably after the short- and long-term fertilizations. The harsh soil conditions may impede the decomposition of organic matters by soil microorganisms during the short-term fertilization. For the long-term fertilization, the input of high-phenolic litters owing to vascular plant expansion likely exerted an important control on soil C dynamics. These processes constrained the variation in soil C concentrations when the addition rate and cumulative amount of external N and P increased, which will advance our understanding and prediction of the resilience of soil C storage to imbalanced nutrient enrichment of N and P in northern peatlands.
-
Soil enzymes play a central role in carbon and nutrient cycling, and their activities can be affected by drought-induced oxygen exposure. However, a systematic global estimate of enzyme sensitivity to drought in wetlands is still lacking. Through a meta-analysis of 55 studies comprising 761 paired observations, this study found that phosphorus-related enzyme activity increased by 38% as result of drought in wetlands, while the majority of other soil enzyme activities remained stable. The expansion of vascular plants under long-term drought significantly promoted the accumulation of phenolic compounds. Using a 2-week incubation experiment with phenol supplementation, we found that phosphorus-related enzyme could tolerate higher biotoxicity of phenolic compounds than other enzymes. Moreover, a long-term (35 years) drainage experiment in a northern peatland in China confirmed that the increased phenolic concentration in surface layer resulting from a shift in vegetation composition inhibited the increase in enzyme activities caused by rising oxygen availability, except for phosphorus-related enzyme. Overall, these results demonstrate the complex and resilient nature of wetland ecosystems, with soil enzymes showing a high degree of adaptation to drought conditions. These new insights could help evaluate the impact of drought on future wetland ecosystem services and provide a theoretical foundation for the remediation of degraded wetlands.