Votre recherche
Résultats 5 ressources
-
Abstract Plants use only a fraction of their photosynthetically derived carbon for biomass production (BP). The biomass production efficiency (BPE), defined as the ratio of BP to photosynthesis, and its variation across and within vegetation types is poorly understood, which hinders our capacity to accurately estimate carbon turnover times and carbon sinks. Here, we present a new global estimation of BPE obtained by combining field measurements from 113 sites with 14 carbon cycle models. Our best estimate of global BPE is 0.41 ± 0.05, excluding cropland. The largest BPE is found in boreal forests (0.48 ± 0.06) and the lowest in tropical forests (0.40 ± 0.04). Carbon cycle models overestimate BPE, although models with carbon–nitrogen interactions tend to be more realistic. Using observation‐based estimates of global photosynthesis, we quantify the global BP of non‐cropland ecosystems of 41 ± 6 Pg C/year. This flux is less than net primary production as it does not contain carbon allocated to symbionts, used for exudates or volatile carbon compound emissions to the atmosphere. Our study reveals a positive bias of 24 ± 11% in the model‐estimated BP (10 of 14 models). When correcting models for this bias while leaving modeled carbon turnover times unchanged, we found that the global ecosystem carbon storage change during the last century is decreased by 67% (or 58 Pg C).
-
Abstract Global and regional projections of climate change by Earth system models are limited by their uncertain estimates of terrestrial ecosystem productivity. At the middle to low latitudes, the East Asian monsoon region has higher productivity than forests in Europe‐Africa and North America, but its estimate by current generation of terrestrial biosphere models (TBMs) has seldom been systematically evaluated. Here, we developed a traceability framework to evaluate the simulated gross primary productivity (GPP) by 15 TBMs in the East Asian monsoon region. The framework links GPP to net primary productivity, biomass, leaf area and back to GPP via incorporating multiple vegetation functional properties of carbon‐use efficiency (CUE), vegetation C turnover time ( τ veg ), leaf C fraction (F leaf ), specific leaf area (SLA), and leaf area index (LAI)‐level photosynthesis (P LAI ), respectively. We then applied a relative importance algorithm to attribute intermodel variation at each node. The results showed that large intermodel variation in GPP over 1901–2010 were mainly propagated from their different representation of vegetation functional properties. For example, SLA explained 77% of the intermodel difference in leaf area, which contributed 90% to the simulated GPP differences. In addition, the models simulated higher CUE (18.1 ± 21.3%), τ veg (18.2 ± 26.9%), and SLA (27.4±36.5%) than observations, leading to the overestimation of simulated GPP across the East Asian monsoon region. These results suggest the large uncertainty of current TBMs in simulating GPP is largely propagated from their poor representation of the vegetation functional properties and call for a better understanding of the covariations between plant functional properties in terrestrial ecosystems. , Key Points A GPP‐traceability framework is established to diagnose the uncertainty sources of modeled GPP Large intermodel differences of modeled GPP result from their different representation of vegetation functional properties Positive bias in simulated GPP over the East Asian monsoon region could be attributed to the higher simulated CUE and SLA comparing with observations
-
Abstract. Field measurements of aboveground net primary productivity (ANPP) in temperate grasslands suggest that both positive and negative asymmetric responses to changes in precipitation (P) may occur. Under normal range of precipitation variability, wet years typically result in ANPP gains being larger than ANPP declines in dry years (positive asymmetry), whereas increases in ANPP are lower in magnitude in extreme wet years compared to reductions during extreme drought (negative asymmetry). Whether the current generation of ecosystem models with a coupled carbon–water system in grasslands are capable of simulating these asymmetric ANPP responses is an unresolved question. In this study, we evaluated the simulated responses of temperate grassland primary productivity to scenarios of altered precipitation with 14 ecosystem models at three sites: Shortgrass steppe (SGS), Konza Prairie (KNZ) and Stubai Valley meadow (STU), spanning a rainfall gradient from dry to moist. We found that (1) the spatial slopes derived from modeled primary productivity and precipitation across sites were steeper than the temporal slopes obtained from inter-annual variations, which was consistent with empirical data; (2) the asymmetry of the responses of modeled primary productivity under normal inter-annual precipitation variability differed among models, and the mean of the model ensemble suggested a negative asymmetry across the three sites, which was contrary to empirical evidence based on filed observations; (3) the mean sensitivity of modeled productivity to rainfall suggested greater negative response with reduced precipitation than positive response to an increased precipitation under extreme conditions at the three sites; and (4) gross primary productivity (GPP), net primary productivity (NPP), aboveground NPP (ANPP) and belowground NPP (BNPP) all showed concave-down nonlinear responses to altered precipitation in all the models, but with different curvatures and mean values. Our results indicated that most models overestimate the negative drought effects and/or underestimate the positive effects of increased precipitation on primary productivity under normal climate conditions, highlighting the need for improving eco-hydrological processes in those models in the future.