Votre recherche
Résultats 20 ressources
-
Numerous empirical studies have demonstrated that street trees not only reduce dust pollution and absorb particulate matter (PM) but also improve microclimates, providing both ecological functions and aesthetic value. However, recent research has revealed that street tree canopy cover can impede the dispersion of atmospheric PM within street canyons, leading to the accumulation of street pollutants. Although many studies have investigated the impact of street trees on air pollutant dispersion within street canyons, the extent of their influence remains unclear and uncertain. Pollutant accumulation corresponds to the specific characteristics of individual street canyons, coupled with meteorological factors and pollution source strength. Notably, the characteristics of street tree canopy cover also exert a significant influence. There is still a quantitative research gap on street tree cover impacts with respect to pollution and dust reduction control measures within street spaces. To improve urban traffic environments, policymakers have mainly focused on scientifically based street vegetation deployment initiatives in building ecological garden cities and improving the living environment. To address uncertainties regarding the influence of street trees on the dispersion of atmospheric PM in urban streets, this study reviews dispersion mechanisms and key atmospheric PM factors in urban streets, summarizes the research approaches used to conceptualize atmospheric PM dispersion in urban street canyons, and examines urban plant efficiency in reducing atmospheric PM. Furthermore, we also address current challenges and future directions in this field to provide a more comprehensive understanding of atmospheric PM dispersion in urban streets and the role that street trees play in mitigating air pollution.
-
Abstract The forest soil methane (CH 4 ) flux exhibits high spatiotemporal variability. Understanding these variations and their driving factors is crucial for accurately assessing the forest CH 4 budget. In this study, we monitored the diurnal and seasonal variations in soil CH 4 fluxes in two poplar ( Populus spp.) plantations (Sihong and Dongtai) with different soil textures using the static chamber-based method. The results showed that the annual average soil CH 4 flux in the Sihong and Dongtai poplar plantations was 4.27 ± 1.37 kg CH 4 -C ha –1 yr –1 and 1.92 ± 1.07 kg CH 4 -C ha –1 yr –1 , respectively. Both plantations exhibited net CH 4 emissions during the growing season, with only weak CH 4 absorption (–0.01 to –0.007 mg m –2 h –1 ) during the non-growing season. Notably, there was a significant difference in soil CH 4 flux between the clay loam of the Sihong poplar plantation and the sandy loam of the Dongtai poplar plantation. From August to December 2019 and from July to August and November 2020, the soil CH 4 flux in the Sihong poplar plantation was significantly higher than in the Dongtai poplar plantation. Moreover, the soil CH 4 flux significantly increased with rising soil temperature and soil water content. Diurnally, the soil CH 4 flux followed a unimodal variation pattern at different growing stages of poplars, with peaks occurring at noon and in the afternoon. However, the soil CH 4 flux did not exhibit a consistent seasonal pattern across different years, likely due to substantial variations in precipitation and soil water content. Overall, our study emphasizes the need for a comprehensive understanding of the spatiotemporal variations in forest soil CH 4 flux with different soil textures. This understanding is vital for developing reasonable forest management strategies and reducing uncertainties in the global CH 4 budget.
-
Abstract Environmental and socioeconomic drivers would alter landscapes, bringing various effects with different directions and magnitudes. Demonstrating these driving effects is key to relieving the conflicts between territorial vegetation restoration and regional economic growth. However, the relationship between ecological protection and economic development due to landscape dynamics has not been systematically demonstrated as environment is difficult to quantify by the monetary value. In this article, we explored the changes in gross ecosystem product (GEP) in the Three Gorges (TG) reservoir area and constructed a conceptual framework to explicate its driving mechanism. Our results suggested that topographic, soil, and climatic factors positively impact on GEP through their important effects on vegetation structure, distribution, and succession. Additionally, reforestation policies promote the conversion of farmland and grassland to forestland in the TG reservoir region, which was the main contributor to enhancing GEP. Conversely, socioeconomic factors negatively impact GEP, of which effects were mainly manifested by changes in the proportion of ecological land. Therefore, it is essential to maintain a suitable land use proportion in this region to optimize GEP, and we proposed a landscape restoration program to enhance four ecosystem productions. This article provides a reference for land resource allocation for environmental protection and sustainable development in ecologically fragile areas.
-
Abstract Accurately predicting carbon‐climate feedbacks relies on understanding the environmental factors regulating soil organic carbon (SOC) storage and dynamics. Here, we employed a microbial ecological model (MEND), driven by downscaled output data from six Earth system models under two Shared Socio‐economic Pathways (SSP1‐2.6 and SSP5‐8.5) scenarios, to simulate long‐term soil biogeochemical processes. We aim to analyze the responses of soil microbial and carbon‐nitrogen (C‐N) processes to changes in environmental factors, including litter input (L), soil moisture (W) and temperature (T), and soil pH, in a broadleaf forest (BF) and a pine forest (PF). For the entire soil layer in both forests, we found that, compared to the baseline period of 2009–2020, the mean SOC during 2081–2100 increased by 40.9%–90.6% under the L or T change scenarios, versus 5.2%–31.0% under the W change scenario. However, soil moisture emerged as a key regulator of SOC, MBC and inorganic N dynamics in the topsoil of BF and PF. For example, W change led to SOC gain of 5.5%–37.2%, compared to the SOC loss of 15.5%–18.0% under L or T scenario. Additionally, a further reduction in soil pH by 0.2 units in the BF, representing the acid rain effect, significantly resulted in an additional SOC gain by 14.2%–21.3%, compared to the LTW (simultaneous changes in the three factors) scenario. These results indicate that the results derived solely from topsoil may not be extrapolated to the entire soil profile. Overall, this study significantly advances our comprehension of how different environmental factors impact the dynamics of SOC and the implications they have for climate change. , Plain Language Summary Accurately predicting carbon‐climate feedbacks relies on understanding the environmental factors regulating soil organic carbon (SOC) storage and dynamics. We aim to analyze the responses of soil microbial and carbon‐nitrogen (C‐N) processes to changes in environmental factors, including litter input (L), soil moisture (W) and temperature (T), and soil pH, in a broadleaf forest (BF) and a pine forest (PF). We found that soil moisture change would be beneficial for SOC accumulation and serves as a key regulator of MBC and inorganic N in topsoil, whereas the change in litterfall or soil temperature are favorable for SOC accumulation in the entire soil profile. Additionally, a further reduction in soil pH by 0.2 units, representing the acid rain effect, significantly resulted in an additional SOC gain by 14.2%–21.3%, compared to the scenario with simultaneous changes in L, W, and T. These results indicate that findings solely from topsoil may not be extrapolated to the entire soil profile. Overall, this study significantly advances our comprehension of how different environmental factors impact the dynamics of SOC and the implications they have for climate change. , Key Points Soil C responses to climate change are depth dependent, therefore, results from just the topsoil may not apply to the entire soil profile Soil moisture change benefits topsoil SOC accumulation, whereas litterfall and soil temperature changes favor SOC accumulation in the entire soil profile We need to pay more attention to the effects of soil moisture and pH rather than temperature and litter‐input on soil biogeochemical processes
-
Abstract Forest above‐ground biomass (AGB) is often estimated by converting the observed tree size using allometric scaling between the dry weight and size of an organism. However, the variations in biomass allocation and scaling between tree crowns and stems due to survival competition during a tree's lifecycle remain unclear. This knowledge gap can improve the understanding of modelling tree biomass allometry because traditional allometries ignore the dynamics of allocation. Herein, we characterised allometric scaling using the dynamic ratio ( r ) of the stem biomass (SB) to AGB and a dynamic exponent. The allometric models were biologically parameterised by the r values for initial, intermediate and final ages rather than only a regression result. The scaling was tested using field measurements of 421 species and 2213 different‐sized trees in pantropical regions worldwide. We found that the scaling fluctuated with tree size, and this fluctuation was driven by the trade‐off relationship of biomass allocation between the tree crown and stem depending on the dynamic crown trait. The allometric scaling between SB and AGB varied from 0.8 to 1.0 for a tree during its entire lifecycle. The fluctuations presented a general law for the allometric scaling of the pantropical tree biomass and size. Our model quantified the trade‐off and explained 94.1% of the allometric relationship between the SB and AGB (93.8% of which between D 2 H and AGB) for pantropical forests, which resulted in a better fit than that of the traditional model. Considering the effects of the trade‐off on modelling, the actual biomass of large trees could be substantially greater than conventional estimates. These results highlight the importance of coupling growth mechanisms in modelling allometry and provide a theoretical foundation for better describing and predicting forest carbon accumulation.
-
Soil enzymes play a central role in carbon and nutrient cycling, and their activities can be affected by drought-induced oxygen exposure. However, a systematic global estimate of enzyme sensitivity to drought in wetlands is still lacking. Through a meta-analysis of 55 studies comprising 761 paired observations, this study found that phosphorus-related enzyme activity increased by 38% as result of drought in wetlands, while the majority of other soil enzyme activities remained stable. The expansion of vascular plants under long-term drought significantly promoted the accumulation of phenolic compounds. Using a 2-week incubation experiment with phenol supplementation, we found that phosphorus-related enzyme could tolerate higher biotoxicity of phenolic compounds than other enzymes. Moreover, a long-term (35 years) drainage experiment in a northern peatland in China confirmed that the increased phenolic concentration in surface layer resulting from a shift in vegetation composition inhibited the increase in enzyme activities caused by rising oxygen availability, except for phosphorus-related enzyme. Overall, these results demonstrate the complex and resilient nature of wetland ecosystems, with soil enzymes showing a high degree of adaptation to drought conditions. These new insights could help evaluate the impact of drought on future wetland ecosystem services and provide a theoretical foundation for the remediation of degraded wetlands.
-
Abstract Litter decomposition is a key ecological process that determines carbon (C) and nutrient cycling in terrestrial ecosystems. The initial concentrations of C and nutrients in litter play a critical role in this process, yet the global patterns of litter initial concentrations of C, nitrogen (N) and phosphorus (P) are poorly understood. We employed machine learning with a global database to quantitatively assess the global patterns and drivers of leaf litter initial C, N and P concentrations, as well as their returning amounts (i.e. amounts returned to soils). The medians of litter C, N and P concentrations were 46.7, 1.1, and 0.1%, respectively, and the medians of litter C, N and P returning amounts were 1.436, 0.038 and 0.004 Mg ha −1 year −1 , respectively. Soil and climate emerged as the key predictors of leaf litter C, N and P concentrations. Predicted global maps showed that leaf litter N and P concentrations decreased with latitude, while C concentration exhibited an opposite pattern. Additionally, the returning amounts of leaf litter C, N and P all declined from the equator to the poles in both hemispheres. Synthesis : Our results provide a quantitative assessment of the global concentrations and returning amounts of leaf litter C, N and P, which showed new light on the role of leaf litter in global C and nutrients cycling.
-
Abstract With over one‐third of terrestrial net primary productivity transferring to the litter layer annually, the carbon release from litter serves as a crucial valve in atmospheric carbon dioxide concentrations. However, few quantitative global projections of litter carbon release rate in response to climate change exist. Here, we combined a global foliar litter carbon release dataset (8973 samples) to generate spatially explicitly estimates of the response of their residence time ( τ ) to climate change. Results show a global mean litter carbon release rate () of 0.69 year −1 (ranging from 0.09–5.6 year −1 ). Under future climate scenarios, global mean τ is projected to decrease by a mean of 2.7% (SSP 1–2.6) and 5.9% (SSP 5–8.5) during 2071–2100 period. Locally, the alleviation of temperature and moisture restrictions corresponded to obvious decreases in τ in cold and arid regions, respectively. In contract, τ in tropical humid broadleaf forests increased by 4.6% under SSP 5–8.5. Our findings highlight the vegetation type as a powerful proxy for explaining global patterns in foliar litter carbon release rates and the role of climate conditions in predicting responses of carbon release to climate change. Our observation‐based estimates could refine carbon cycle parameterization, improving projections of carbon cycle–climate feedbacks.
-
Abstract Anthropogenic activities have substantially enhanced the loadings of reactive nitrogen (Nr) in the Earth system since pre-industrial times 1,2 , contributing to widespread eutrophication and air pollution 3–6 . Increased Nr can also influence global climate through a variety of effects on atmospheric and land processes but the cumulative net climate effect is yet to be unravelled. Here we show that anthropogenic Nr causes a net negative direct radiative forcing of −0.34 [−0.20, −0.50] W m −2 in the year 2019 relative to the year 1850. This net cooling effect is the result of increased aerosol loading, reduced methane lifetime and increased terrestrial carbon sequestration associated with increases in anthropogenic Nr, which are not offset by the warming effects of enhanced atmospheric nitrous oxide and ozone. Future predictions using three representative scenarios show that this cooling effect may be weakened primarily as a result of reduced aerosol loading and increased lifetime of methane, whereas in particular N 2 O-induced warming will probably continue to increase under all scenarios. Our results indicate that future reductions in anthropogenic Nr to achieve environmental protection goals need to be accompanied by enhanced efforts to reduce anthropogenic greenhouse gas emissions to achieve climate change mitigation in line with the Paris Agreement.