Votre recherche
Résultats 42 ressources
-
Urbanization can induce environmental changes such as the urban heat island effect, which in turn influence the terrestrial ecosystem. However, the effect of urbanization on the phenology of subtropical vegetation remains relatively unexplored. This study analyzed the changing trend of vegetation photosynthetic phenology in Dongting Lake basin, China, and its response to urbanization using nighttime light and chlorophyll fluorescence datasets. Our results indicated the start of the growing season (SOS) of vegetation in the study area was significantly advanced by 0.70 days per year, whereas the end of the growing season (EOS) was delayed by 0.24 days per year during 2000–2017. We found that urbanization promoted the SOS advance and EOS delay. With increasing urbanization intensity, the sensitivity of SOS to urbanization firstly increased then decreased, while the sensitivity of EOS to urbanization decreased with urbanization intensity. The climate sensitivity of vegetation phenology varied with urbanization intensity; urbanization induced an earlier SOS by increasing preseason minimum temperatures and a later EOS by increasing preseason precipitation. These findings improve our understanding of the vegetation phenology response to urbanization in subtropical regions and highlight the need to integrate human activities into future vegetation phenology models.
-
Quantifying the characteristics of urban expansion as well as influencing factors is essential for the simulation and prediction of urban expansion. In this study, we extracted the built-up regions of 14 central cities in the Hunan province using the DMSP-OLS night light remote sensing datasets from 1992 to 2018, and evaluated the spatial and temporal characteristics of the built-up regions in terms of the area, expansion speed, and main expansion direction. The backpropagation (BP) neural network and autoregressive integrated moving average (ARIMA) model were used to predict the area of the built-up regions from 2019 to 2026. The model predictions were based on the GDP, ratio of the secondary industry output to the GDP, ratio of the tertiary industry output to the GDP, year-end urban population, and urban road area. The results demonstrated that the built-up area and expansion speed of the central cities in the eastern part of the Hunan province were significantly higher than those in the western part. The main expansion directions of the 14 central cities were east and south. The urban road area, year-end urban population, and GDP were the main driving factors of the expansion. The urban expansion model based on the BP neural network provided a high prediction accuracy (R = 0.966). It was estimated that the total area of urban built-up regions in the Hunan province will reach 2463.80 km2 by 2026. These findings provide a new perspective for predicting urban areas rapidly and simply, and it also provides a useful reference for studying the spatial expansion characteristics of central cities and formulating a sustainable urban development strategy during the 14th Five-Year Plan of China.
-
Abstract Digital leaf physiognomy (DLP) is considered as one of the most promising methods for estimating past climate. However, current models built using the DLP data set still lack precision, especially for mean annual precipitation (MAP). To improve predictive power, we developed five machine learning (ML) models for mean annual temperature (MAT) and MAP respectively, and then tested the precision of these models and some of their averaging compared with that obtained from other models. The precision of all models was assessed using a repeated stratified 10‐fold cross‐validation. For MAT, three combinations of models ( R 2 = .77) presented moderate improvements in precision over the multiple linear regression (MLR) model ( R 2 = .68). For log e (MAP), the averaging of the support vector machine (SVM) and boosting models improved the R 2 from .19 to .63 compared with that of the MLR model. For MAP, the R 2 of this model combination was 0.49, which was much better than that of the artificial neural network (ANN) model ( R 2 = .21). Even the bagging model, which had the lowest R 2 (.37) for log e (MAP), demonstrated better precision ( R 2 = .27) for MAP. Our palaeoclimate estimates for nine fossil floras were also more accurate, because they were in better agreement with independent paleoclimate evidence. Our study confirms that our ML models and their averaging can improve paleoclimatic reconstructions, providing a better understanding of the relationship between climate and leaf physiognomy.
-
Abstract Digital leaf physiognomy (DLP) is considered as one of the most promising methods for estimating past climate. However, current models built using the DLP data set still lack precision, especially for mean annual precipitation (MAP). To improve predictive power, we developed five machine learning (ML) models for mean annual temperature (MAT) and MAP respectively, and then tested the precision of these models and some of their averaging compared with that obtained from other models. The precision of all models was assessed using a repeated stratified 10‐fold cross‐validation. For MAT, three combinations of models ( R 2 = .77) presented moderate improvements in precision over the multiple linear regression (MLR) model ( R 2 = .68). For log e (MAP), the averaging of the support vector machine (SVM) and boosting models improved the R 2 from .19 to .63 compared with that of the MLR model. For MAP, the R 2 of this model combination was 0.49, which was much better than that of the artificial neural network (ANN) model ( R 2 = .21). Even the bagging model, which had the lowest R 2 (.37) for log e (MAP), demonstrated better precision ( R 2 = .27) for MAP. Our palaeoclimate estimates for nine fossil floras were also more accurate, because they were in better agreement with independent paleoclimate evidence. Our study confirms that our ML models and their averaging can improve paleoclimatic reconstructions, providing a better understanding of the relationship between climate and leaf physiognomy.
-
Abstract Vegetation restoration has been proposed as an effective measure for rehabilitating degraded land and slowing desertification in arid regions. However, the spatial variation in soil quality and plant diversity following vegetation restoration remains unclear. This study was designed to explore soil nutrient dynamics and how soil nutrients affect plant diversity and spatial heterogeneity after shrub restoration. We assessed the effect of Haloxylon ammodendron (C.A.Mey.) Bunge (which has been planted over 30 years) on the soil nutrients and plant diversity in a desert–oasis ecotone in Minqin County, Gansu, China, using geostatistics, beta diversity and rarefaction analyses, and Hill number extrapolation. Soil nutrients, including soil organic matter, total nitrogen, and alkali nitrogen, increased significantly after H. ammodendron planting. Species richness gradually increased from 1–5 years to 10–20 years after H. ammodendron was planted but then decreased at 20–30 years. The largest differences in plant composition were observed at 15 and 20 years. Plant diversity increased in the whole 30 years after shrub planting, increasing in the first 25 years and then decreasing at 26–30 year stage. The maximum coefficient of determination for the spatial heterogeneity model fit was 0.84 (25 years). The spatial heterogeneity in vegetation decreased with increasing soil available K content at 1–10 years. Our results suggest that planting shrubs can improve soil conditions and plant species diversity in desert–oasis ecotones and soil nutrients have a strong influence on plant diversity patterns and spatial heterogeneity following vegetation restoration.
-
Abstract Forest soils play an important role in controlling global warming by reducing atmospheric methane (CH 4 ) concentrations. However, little attention has been paid to how nitrogen (N) deposition may alter microorganism communities that are related to the CH 4 cycle or CH 4 oxidation in subtropical forest soils. We investigated the effects of N addition (0, 30, 60, or 90 kg N ha −1 yr −1 ) on soil CH 4 flux and methanotroph and methanogen abundance, diversity, and community structure in a Moso bamboo ( Phyllostachys edulis ) forest in subtropical China. N addition significantly increased methanogen abundance but reduced both methanotroph and methanogen diversity. Methanotroph and methanogen community structures under the N deposition treatments were significantly different from those of the control. In N deposition treatments, the relative abundance of Methanoculleus was significantly lower than that in the control. Soil pH was the key factor regulating the changes in methanotroph and methanogen diversity and community structure. The CH 4 emission rate increased with N addition and was negatively correlated with both methanotroph and methanogen diversity but positively correlated with methanogen abundance. Overall, our results suggested that N deposition can suppress CH 4 uptake by altering methanotroph and methanogen abundance, diversity, and community structure in subtropical Moso bamboo forest soils.
-
Abstract Background Vegetation phenology research has largely focused on temperate deciduous forests, thus limiting our understanding of the response of evergreen vegetation to climate change in tropical and subtropical regions. Results Using satellite solar-induced chlorophyll fluorescence (SIF) and MODIS enhanced vegetation index (EVI) data, we applied two methods to evaluate temporal and spatial patterns of the end of the growing season (EGS) in subtropical vegetation in China, and analyze the dependence of EGS on preseason maximum and minimum temperatures as well as cumulative precipitation. Our results indicated that the averaged EGS derived from the SIF and EVI based on the two methods (dynamic threshold method and derivative method) was later than that derived from gross primary productivity (GPP) based on the eddy covariance technique, and the time-lag for EGS sif and EGS evi was approximately 2 weeks and 4 weeks, respectively. We found that EGS was positively correlated with preseason minimum temperature and cumulative precipitation (accounting for more than 73% and 62% of the study areas, respectively), but negatively correlated with preseason maximum temperature (accounting for more than 59% of the study areas). In addition, EGS was more sensitive to the changes in the preseason minimum temperature than to other climatic factors, and an increase in the preseason minimum temperature significantly delayed the EGS in evergreen forests, shrub and grassland. Conclusions Our results indicated that the SIF outperformed traditional vegetation indices in capturing the autumn photosynthetic phenology of evergreen forest in the subtropical region of China. We found that minimum temperature plays a significant role in determining autumn photosynthetic phenology in the study region. These findings contribute to improving our understanding of the response of the EGS to climate change in subtropical vegetation of China, and provide a new perspective for accurately evaluating the role played by evergreen vegetation in the regional carbon budget.
-
Abstract In sub-Saharan Africa (SSA), precipitation is an important driver of agricultural production. In Uganda, maize production is essentially rain-fed. However, due to changes in climate, projected maize yield targets have not often been met as actual observed maize yields are often below simulated/projected yields. This outcome has often been attributed to parallel gaps in precipitation. This study aims at identifying maize yield and precipitation gaps in Uganda for the period 1998–2017. Time series historical actual observed maize yield data (hg/ha/year) for the period 1998–2017 were collected from FAOSTAT. Actual observed maize growing season precipitation data were also collected from the climate portal of World Bank Group for the period 1998–2017. The simulated or projected maize yield data and the simulated or projected growing season precipitation data were simulated using a simple linear regression approach. The actual maize yield and actual growing season precipitation data were now compared with the simulated maize yield data and simulated growing season precipitation to establish the yield gaps. The results show that three key periods of maize yield gaps were observed (period one: 1998, period two: 2004–2007 and period three: 2015–2017) with parallel precipitation gaps. However, in the entire series (1998–2017), the years 2008–2009 had no yield gaps yet, precipitation gaps were observed. This implies that precipitation is not the only driver of maize yields in Uganda. In fact, this is supported by a low correlation between precipitation gaps and maize yield gaps of about 6.3%. For a better understanding of cropping systems in SSA, other potential drivers of maize yield gaps in Uganda such as soils, farm inputs, crop pests and diseases, high yielding varieties, literacy, and poverty levels should be considered.
-
Abstract Ecosystem-level effects of increasing atmospheric nitrogen (N) deposition on the phosphorus (P) cycle and P use strategy are poorly understood. Here, we conducted a seven year N-addition experiment to comprehensively evaluate the effects of N deposition on P limitation, cycling, and use strategy in a subtropical Moso bamboo forest. N addition significantly increased foliar litterfall by 4.7%–21.7% and subsequent P return to the soil by 49.0%–70.1%. It also increased soil acidity, acid phosphatase activity, and soil microbial biomass P, which substantially contributed to a significantly increased soil P availability and largely alleviated the P limitation. This resulted in a significant decrease in the foliar P-resorption efficiency and the abundance and colonization of arbuscular mycorrhizal fungi. Our results indicate that N deposition can reduce plant internal cycling while enhancing ecosystem-scale cycling of P in Moso bamboo forests. This suggests a shift in P use from a ‘conservative consumption’ strategy to a ‘resource spending’ strategy. Our findings shed new light on N deposition effects on P cycle processes and P use strategy at the ecosystem scale under increasing atmospheric N deposition.
-
Although rice paddy fields are one of the world’s largest anthropogenic sources of methane CH4, the budget of ecosystem CH4 and its’ controls in rice paddies remain unclear. Here, we analyze seasonal dynamics of direct ecosystem-scale measurements of CH4 flux in a rice-wheat rotation agroecosystem over 3 consecutive years. Results showed that the averaged CO2 uptakes and CH4 emissions in rice seasons were 2.2 and 20.9 folds of the wheat seasons, respectively. In sum, the wheat-rice rotation agroecosystem acted as a large net C sink (averaged 460.79 g C m−2) and a GHG (averaged 174.38 g CO2eq m−2) source except for a GHG sink in one year (2016) with a very high rice seeding density. While the linear correlation between daily CH4 fluxes and gross ecosystem productivity (GEP) was not significant for the whole rice season, daily CH4 fluxes were significantly correlated to daily GEP both before (R2: 0.52–0.83) and after the mid-season drainage (R2: 0.71–0.79). Furthermore, the F partial test showed that GEP was much greater than that of any other variable including soil temperature for the rice season in each year. Meanwhile, the parameters of the best-fit functions between daily CH4 fluxes and GEP shifted between rice growth stages. This study highlights that GEP is a good predictor of daily CH4 fluxes in rice paddies.
-
Intense and frequent drought events strongly affect plant survival. Non-structural carbohydrates (NSCs) are important “buffers” to maintain plant functions under drought conditions. We conducted a drought manipulation experiment using three-year-old Pinus tabulaeformis Carr. seedlings. The seedlings were first treated under different drought intensities (i.e., no irrigation, severe, and moderate) for 50 days, and then they were re-watered for 25 days to explore the dynamics of NSCs in the leaves, twigs, stems, and roots. The results showed that the no irrigation and severe drought treatments significantly reduced photosynthetic rate by 93.9% and 32.6% for 30 days, respectively, leading to the depletion of the starch storage for hydraulic repair, osmotic adjustment, and plant metabolism. The seedlings under moderate drought condition also exhibited starch storage consumption in leaves and twigs. After re-watering, the reduced photosynthetic rate recovered to the control level within five days in the severe drought group but showed no sign of recovery in the no irrigation group. The seedlings under the severe and moderate drought conditions tended to invest newly fixed C to starch storage and hydraulic repair instead of growth due to the “drought legacy effect”. Our findings suggest the depletion and recovery of starch storage are important strategies for P. tabulaeformis seedlings, and they may play key roles in plant resistance and resilience under environmental stress.