Votre recherche
Résultats 27 ressources
-
Abstract Forest insects are major disturbances that induce tree mortality in eastern coniferous (or fir‐spruce) forests in eastern North America. The spruce budworm ( SBW ) ( Choristoneura fumiferana [Clemens]) is the most devastating insect causing tree mortality. However, the relative importance of insect‐caused mortality versus tree mortality caused by other agents and how this relationship will change with climate change is not known. Based on permanent sample plots across eastern Canada, we combined a logistic model with a negative model to estimate tree mortality. The results showed that tree mortality increased mainly due to forest insects. The mean difference in annual tree mortality between plots disturbed by insects and those without insect disturbance was 0.0680 per year ( P < 0.0001, T ‐test), and the carbon sink loss was about 2.87t C ha −1 year −1 larger than in natural forests. We also found that annual tree mortality increased significantly with the annual climate moisture index ( CMI ) and decreased significantly with annual minimum temperature ( T min ), annual mean temperature ( T mean ) and the number of degree days below 0°C ( DD 0), which was inconsistent with previous studies (Adams et al. ; van Mantgem et al. ; Allen et al. ). Furthermore, the results for the trends in the magnitude of forest insect outbreaks were consistent with those of climate factors for annual tree mortality. Our results demonstrate that forest insects are the dominant cause of the tree mortality in eastern Canada but that tree mortality induced by insect outbreaks will decrease in eastern Canada under warming climate.
-
Significance Understanding the location of carbon sources and sinks is essential for accurately predicting future changes in atmospheric carbon dioxide and climate. Mid- to high-latitude terrestrial ecosystems are well known to be the principal carbon sink regions, yet less attention has been paid to the mid- to low-latitude ecosystems. In this study, long-term eddy covariance observations demonstrate that there is a high carbon dioxide uptake (net ecosystem productivity) by the mid- to low-latitude East Asian monsoon subtropical forests that were shaped by the uplift of the Tibetan Plateau. Increasing nitrogen deposition, a young forest age structure, and sufficient water and heat availability combined to contribute to this large carbon dioxide uptake. , Temperate- and high-latitude forests have been shown to contribute a carbon sink in the Northern Hemisphere, but fewer studies have addressed the carbon balance of the subtropical forests. In the present study, we integrated eddy covariance observations established in the 1990s and 2000s to show that East Asian monsoon subtropical forests between 20°N and 40°N represent an average net ecosystem productivity (NEP) of 362 ± 39 g C m −2 yr −1 (mean ± 1 SE). This average forest NEP value is higher than that of Asian tropical and temperate forests and is also higher than that of forests at the same latitudes in Europe–Africa and North America. East Asian monsoon subtropical forests have comparable NEP to that of subtropical forests of the southeastern United States and intensively managed Western European forests. The total NEP of East Asian monsoon subtropical forests was estimated to be 0.72 ± 0.08 Pg C yr −1 , which accounts for 8% of the global forest NEP. This result indicates that the role of subtropical forests in the current global carbon cycle cannot be ignored and that the regional distributions of the Northern Hemisphere's terrestrial carbon sinks are needed to be reevaluated. The young stand ages and high nitrogen deposition, coupled with sufficient and synchronous water and heat availability, may be the primary reasons for the high NEP of this region, and further studies are needed to quantify the contribution of each underlying factor.
-
Populus × euramericana (Pe) displays higher stable carbon isotope composition ( δ 13 C ) and intrinsic water use efficiency ( WUE i ) than Populus cathayana (Pc) under unlimited water conditions, rendering us to hypothesize that Pe is better acclimated to water deficiency than Pc. To examine this hypothesis, saplings of Pc and Pe were exposed to drought and subsequently re‐watered. Pc and Pe exhibited distinct anatomical, physiological and transcriptional responses in acclimation to drought and re‐watering, mainly due to stronger responsiveness of transcriptional regulation of genes encoding plasma membrane intrinsic proteins ( PIPs ), higher starch accumulation, δ 13 C , stable nitrogen isotope composition ( δ 15 N ) and WUE i , and lower reactive oxygen species ( ROS ) accumulation and scavenging in Pe. In acclimation to drought, both poplar genotypes demonstrated altered anatomical properties, declined height growth, differential expression of PIP s, activation of ABA signaling pathway, decreased total soluble sugars and starch, increased δ 13 C, δ 15 N and WUE i , and shifted homeostasis of ROS production and scavenging, and these changes can be recovered upon re‐watering. These data indicate that Pe is more tolerant to drought than Pc, and that anatomical, physiological and transcriptional acclimation to drought and re‐watering is essential for poplars to survive and grow under projected dry climate scenarios in the future.
-
Ectomycorrhizas ( EMs ), which are symbiotic organs formed between tree roots and certain fungi, can mediate cadmium ( Cd ) tolerance of host plants, but the underlying physiological and molecular mechanisms are not fully understood. P opulus × canescens was inoculated with or without P axillus involutus (strain MAJ ) and subsequently exposed to 0 or 50 μM CdSO 4 . Higher net Cd 2+ influx in EMs well corresponded to higher transcript levels of genes involved in Cd 2+ uptake, transport and detoxification processes than those in nonmycorrhizal roots. Higher CO 2 assimilation, improved nutrient and carbohydrate status, and alleviated oxidative stress were found in mycorrhizal compared to nonmycorrhizal poplars despite higher Cd 2+ accumulation. , Abstract Ectomycorrhizas ( EMs ), which are symbiotic organs formed between tree roots and certain fungi, can mediate cadmium ( Cd ) tolerance of host plants, but the underlying physiological and molecular mechanisms are not fully understood. To investigate EMs mediated Cd tolerance in woody plants, P opulus × canescens was inoculated with P axillus involutus (strain MAJ ) to establish mycorrhizal roots. Mycorrhizal poplars and non‐mycorrhizal controls were exposed to 0 or 50 μ M CdSO 4 . EMs displayed higher net Cd 2+ influx than non‐mycorrhizal roots. Net Cd 2+ influx was coupled with net H + efflux and inactivation of plasma membrane ( PM ) H + ‐ ATPases reduced Cd 2+ uptake of EMs less than of non‐mycorrhizal roots. Consistent with higher Cd 2+ uptake in EMs , in most cases, transcript levels of genes involved in Cd 2+ uptake, transport and detoxification processes were increased in EMs compared to non‐mycorrhizal roots. Higher CO 2 assimilation, improved nutrient and carbohydrate status, and alleviated oxidative stress were found in mycorrhizal compared to non‐mycorrhizal poplars despite higher Cd 2+ accumulation. These results indicate that mycorrhizas increase Cd 2+ uptake, probably by an enlarged root volume and overexpression of genes involved in Cd 2+ uptake and transport, and concurrently enhance P o. × canescens Cd tolerance by increased detoxification, improved nutrient and carbohydrate status and defence preparedness.
- 1
- 2