Votre recherche
Résultats 410 ressources
-
The spruce budworm (SBW) defoliates and kills conifer trees, consequently affecting carbon (C) exchanges between the land and atmosphere. Here, we developed a new TRIPLEX-Insect sub-model to quantify the impacts of insect outbreaks on forest C fluxes. We modeled annual defoliation (AD), cumulative defoliation (CD), and tree mortality. The model was validated against observed and published data at the stand level in the North Shore region of Québec and Cape Breton Island in Nova Scotia, Canada. The results suggest that TRIPLEX-Insect performs very well in capturing tree mortality following SBW outbreaks and slightly underestimates current annual volume increment (CAI). In both mature and immature forests, the simulation model suggests a larger reduction in gross primary productivity (GPP) than in autotrophic respiration (Ra) at the same defoliation level when tree mortality was low. After an SBW outbreak, the growth release of surviving trees contributes to the recovery of annual net ecosystem productivity (NEP) based on forest age if mortality is not excessive. Overall, the TRIPLEX-Insect model is capable of simulating C dynamics of balsam fir following SBW disturbances and can be used as an efficient tool in forest insect management.
-
The spatial and temporal variation and uncertainty of precipitation and runoff in China were compared and evaluated between historical and future periods under different climate change scenarios. The precipitation pattern is derived from observed and future projected precipitation data for historical and future periods, respectively. The runoff is derived from simulation results in historical and future periods using a dynamic global vegetation model (DGVM) forced with historical observed and global climate models (GCMs) future projected climate data, respectively. One GCM (CGCM3.1) under two emission scenarios (SRES A2 and SRES B1) was used for the future period simulations. The results indicated high uncertainties and variations in climate change effects on hydrological processes in China: precipitation and runoff showed a significant increasing trend in the future period but a decreasing trend in the historical period at the national level; the temporal variation and uncertainty of projected precipitation and runoff in the future period were predicted to be higher than those in the historical period; the levels of precipitation and runoff in the future period were higher than those in the historical period. The change in trends of precipitation and runoff are highly affected by different climate change scenarios. GCM structure and emission scenarios should be the major sources of uncertainty.
-
Based on the mass balance approach, a detailed quantification of nitrogen (N) cycling was constructed for an urban–rural complex system, named the Greater Hangzhou Area (GHA) system, for this paper. The GHA is located in the humid climatic region on the southeastern coast of China, one of the earliest regions in the Yangtze Delta to experience economic development. Total N input into the GHA was calculated at 274.66 Gg/yr (1 Gg = 10 9 g), and total output was calculated at 227.33 Gg/yr, while N accumulation was assessed at 47.33 Gg/yr (17.2% of the total N input). Human activity resulted in 73% of N input by means of synthetic fertilizers, human food, animal feed, imported N containing chemicals, fossil fuel combustion, and other items. More than 69.3% of N was released into the atmosphere, and riverine N export accounted for 22.2% of total N output. N input and output to and from the GHA in 1980 were estimated at 119.53 Gg/yr and 98.30 Gg/yr, respectively, with an increase of 130% and 131%, respectively, during a 24‐year period (from 1980 to 2004). The N input increase was influenced by synthetic fertilizers (138%), animal feed (225%), N‐containing chemicals (371%), riverine input (311%), and N deposition (441%). Compared to the N balance seen in the arid Central Arizona–Phoenix (CAP) system in the United States, the proportion of N transferred to water bodies in the humid GHA system was found to be 36 times higher than the CAP system. Anthropogenic activity, as it typically does, enhanced the flux of N biogeochemistry in the GHA; however, a lack of an N remover (N pollutant treatment facilities) causes excess reactive N (N r ; such as NH 3 , N 2 O, NO x ), polluting water bodies and the atmosphere within the GHA. Therefore many challenges remain ahead in order to achieve sustainable development in the rapidly developing GHA system.
-
Abstract Accurately predicting carbon‐climate feedbacks relies on understanding the environmental factors regulating soil organic carbon (SOC) storage and dynamics. Here, we employed a microbial ecological model (MEND), driven by downscaled output data from six Earth system models under two Shared Socio‐economic Pathways (SSP1‐2.6 and SSP5‐8.5) scenarios, to simulate long‐term soil biogeochemical processes. We aim to analyze the responses of soil microbial and carbon‐nitrogen (C‐N) processes to changes in environmental factors, including litter input (L), soil moisture (W) and temperature (T), and soil pH, in a broadleaf forest (BF) and a pine forest (PF). For the entire soil layer in both forests, we found that, compared to the baseline period of 2009–2020, the mean SOC during 2081–2100 increased by 40.9%–90.6% under the L or T change scenarios, versus 5.2%–31.0% under the W change scenario. However, soil moisture emerged as a key regulator of SOC, MBC and inorganic N dynamics in the topsoil of BF and PF. For example, W change led to SOC gain of 5.5%–37.2%, compared to the SOC loss of 15.5%–18.0% under L or T scenario. Additionally, a further reduction in soil pH by 0.2 units in the BF, representing the acid rain effect, significantly resulted in an additional SOC gain by 14.2%–21.3%, compared to the LTW (simultaneous changes in the three factors) scenario. These results indicate that the results derived solely from topsoil may not be extrapolated to the entire soil profile. Overall, this study significantly advances our comprehension of how different environmental factors impact the dynamics of SOC and the implications they have for climate change. , Plain Language Summary Accurately predicting carbon‐climate feedbacks relies on understanding the environmental factors regulating soil organic carbon (SOC) storage and dynamics. We aim to analyze the responses of soil microbial and carbon‐nitrogen (C‐N) processes to changes in environmental factors, including litter input (L), soil moisture (W) and temperature (T), and soil pH, in a broadleaf forest (BF) and a pine forest (PF). We found that soil moisture change would be beneficial for SOC accumulation and serves as a key regulator of MBC and inorganic N in topsoil, whereas the change in litterfall or soil temperature are favorable for SOC accumulation in the entire soil profile. Additionally, a further reduction in soil pH by 0.2 units, representing the acid rain effect, significantly resulted in an additional SOC gain by 14.2%–21.3%, compared to the scenario with simultaneous changes in L, W, and T. These results indicate that findings solely from topsoil may not be extrapolated to the entire soil profile. Overall, this study significantly advances our comprehension of how different environmental factors impact the dynamics of SOC and the implications they have for climate change. , Key Points Soil C responses to climate change are depth dependent, therefore, results from just the topsoil may not apply to the entire soil profile Soil moisture change benefits topsoil SOC accumulation, whereas litterfall and soil temperature changes favor SOC accumulation in the entire soil profile We need to pay more attention to the effects of soil moisture and pH rather than temperature and litter‐input on soil biogeochemical processes
-
Abstract Microbial physiology plays a critical role in the biogeochemical cycles of the Earth system. However, most traditional soil carbon models are lacking in terms of the representation of key microbial processes that control the soil carbon response to global climate change. In this study, the improved process‐based model TRIPLEX‐GHG was developed by coupling it with the new MEND (Microbial‐ENzyme‐mediated Decomposition) model to estimate total global soil organic carbon (SOC) and global soil microbial carbon. The new model (TRIPLEX‐MICROBE) shows considerable improvement over the previous version (TRIPLEX‐GHG) in simulating SOC. We estimated the global soil carbon stock to be approximately 1195 Pg C, with 348 Pg C located in the high northern latitudes, which is in good agreement with the well‐regarded Harmonized World Soil Database (HWSD) and the Northern Circumpolar Soil Carbon Database (NCSCD). We also estimated the global soil microbial carbon to be 21 Pg C, similar to the 23 Pg C estimated by Xu et al. (2014). We found that the microbial carbon quantity in the latitudinal direction showed reversions at approximately 30°N, near the equator and at 25°S. A sensitivity analysis suggested that the tundra ecosystem exhibited the highest sensitivity to a 1°C increase or decrease in temperature in terms of dissolved organic carbon (DOC), microbial biomass carbon (MBC), and mineral‐associated organic carbon (MOC). However, our work represents the first step toward a new generation of ecosystem process models capable of integrating key microbial processes into soil carbon cycles. , Key Points Traditional soil carbon models are lacking in their representation of key microbial processes that control the soil carbon response to global climate change A Ecosystem model (TRIPLEX‐MICROBE) offers considerable improvement over a previous version (TRIPLEX‐GHG) in simulating soil organic carbon Our work is the first step toward a new generation of ecosystem process models that integrate key microbial processes into soil carbon cycles