Votre recherche
Résultats 437 ressources
-
Although rice paddy fields are one of the world’s largest anthropogenic sources of methane CH4, the budget of ecosystem CH4 and its’ controls in rice paddies remain unclear. Here, we analyze seasonal dynamics of direct ecosystem-scale measurements of CH4 flux in a rice-wheat rotation agroecosystem over 3 consecutive years. Results showed that the averaged CO2 uptakes and CH4 emissions in rice seasons were 2.2 and 20.9 folds of the wheat seasons, respectively. In sum, the wheat-rice rotation agroecosystem acted as a large net C sink (averaged 460.79 g C m−2) and a GHG (averaged 174.38 g CO2eq m−2) source except for a GHG sink in one year (2016) with a very high rice seeding density. While the linear correlation between daily CH4 fluxes and gross ecosystem productivity (GEP) was not significant for the whole rice season, daily CH4 fluxes were significantly correlated to daily GEP both before (R2: 0.52–0.83) and after the mid-season drainage (R2: 0.71–0.79). Furthermore, the F partial test showed that GEP was much greater than that of any other variable including soil temperature for the rice season in each year. Meanwhile, the parameters of the best-fit functions between daily CH4 fluxes and GEP shifted between rice growth stages. This study highlights that GEP is a good predictor of daily CH4 fluxes in rice paddies.
-
Rapid urbanization has led to the continuous deterioration of the surrounding natural ecosystem. It is important to identify the key urbanization factors that affect ecosystem services and analyze the potential effects of these factors on the ecosystem. We selected the Beijing, Tianjin, and Hebei (BTH) urban agglomeration to investigate these effects, and designed three indicators to map the urbanization level: Population density, gross domestic product (GDP) density, and the construction land proportion. Four indicators were chosen to quantify ecosystem services: Food production, carbon sequestration and oxygen production, water conservation, and soil conservation. To handle the nonlinear interactions, we used a random forest (RF) method to assess the effect of urbanization on ecosystem services in the BTH area from 2000 to 2014. Our study demonstrated that population density and economic growth were the internal driving forces affecting ecosystem services. We observed changing trends in the effect of urbanization: The effect of population density on ecosystem services increased, the effect of the proportion of construction land was consistent with population density, and the effect of GDP density on ecosystem services decreased. Our results suggest that controlling the population and GDP would significantly influence the sustainable development in large urban areas.
-
Abstract Background In recent decades the future of global forests has been a matter of increasing concern, particularly in relation to the threat of forest ecosystem responses under potential climate change. To the future predictions of these responses, the current forest biomass carbon storage (FCS) should first be clarified as much as possible, especially at national scales. However, few studies have introduced how to verify an FCS estimate by delimiting the reasonable ranges. This paper addresses an estimation of national FCS and its verification using two-step process to narrow the uncertainty. Our study focuses on a methodology for reducing the uncertainty resulted by converting from growing stock volume to above- and below-ground biomass (AB biomass), so as to eliminate the significant bias in national scale estimations. Methods We recommend splitting the estimation into two parts, one part for stem and the other part for AB biomass to preclude possible significant bias. Our method estimates the stem biomass from volume and wood density (WD), and converts the AB biomass from stem biomass by using allometric relationships. Results Based on the presented two-step process, the estimation of China’s FCS is performed as an example to explicate how to infer the ranges of national FCS. The experimental results demonstrate a national FCS estimation within the reasonable ranges (relative errors: + 4.46% and − 4.44%), e.g., 5.6–6.1 PgC for China’s forest ecosystem at the beginning of the 2010s. These ranges are less than 0.52 PgC for confirming each FCS estimate of different periods during the last 40 years. In addition, our results suggest the upper-limits by specifying a highly impractical value of WD (0.7 t∙m − 3 ) on the national scale. As a control reference, this value decides what estimate is impossible to achieve for the FCS estimates. Conclusions Presented methodological analysis highlights the possibility to determine a range that the true value could be located in. The two-step process will help to verify national FCS and also to reduce uncertainty in related studies. While the true value of national FCS is immeasurable, our work should motivate future studies that explore new estimations to approach the true value by narrowing the uncertainty in FCS estimations on national and global scales.
-
Methane accounts for 20% of the global warming caused by greenhouse gases, and wastewater is a major anthropogenic source of methane. Based on the Intergovernmental Panel on Climate Change greenhouse gas inventory guidelines and current research findings, we calculated the amount of methane emissions from 2000 to 2014 that originated from wastewater from different provinces in China. Methane emissions from wastewater increased from 1349.01 to 3430.03 Gg from 2000 to 2014, and the mean annual increase was 167.69 Gg. The methane emissions from industrial wastewater treated by wastewater treatment plants ( E It ) accounted for the highest proportion of emissions. We also estimated the future trend of industrial wastewater methane emissions using the artificial neural network model. A comparison of the emissions for the years 2020, 2010, and 2000 showed an increasing trend in methane emissions in China and a spatial transition of industrial wastewater emissions from eastern and southern regions to central and southwestern regions and from coastal regions to inland regions. These changes were caused by changes in economics, demographics, and relevant policies. , Key Points Methane emission from wastewater from 2000 to 2014 was calculated to increase from 1349.01 Gg to 3430.03 Gg. Methane emission from wastewater from 2015 to 2020 was estimated to increase from 3875.30 Gg to 5212.75 Gg. A spatial transition of methane emission from wastewater was found and discussed in the present study.
-
Satellite data are vital for understanding the large-scale spatial distribution of particulate matter (PM 2.5 ) due to their low cost, wide coverage, and all-weather capability. Estimation of PM 2.5 using satellite aerosol optical depth (AOD) products is a popular method. In this paper, we review the PM 2.5 estimation process based on satellite AOD data in terms of data sources (i.e., inversion algorithms, data sets, and interpolation methods), estimation models (i.e., statistical regression, chemical transport models, machine learning, and combinatorial analysis), and modeling validation (i.e., four types of cross-validation (CV) methods). We found that the accuracy of time-based CV is lower than others. We found significant differences in modeling accuracy between different seasons ( p < 0.01) and different spatial resolutions ( p < 0.01). We explain these phenomena in this article. Finally, we summarize the research process, present challenges, and future directions in this field. We opine that low-cost mobile devices combined with transfer learning or hybrid modeling offer research opportunities in areas with limited PM 2.5 monitoring stations and historical PM 2.5 estimation. These methods can be a good choice for air pollution estimation in developing countries. The purpose of this study is to provide a basic framework for future researchers to conduct relevant research, enabling them to understand current research progress and future research directions.
-
Machine learning, an important branch of artificial intelligence, is increasingly being applied in sciences such as forest ecology. Here, we review and discuss three commonly used methods of machine learning (ML) including decision-tree learning, artificial neural network, and support vector machine and their applications in four different aspects of forest ecology over the last decade. These applications include: (i) species distribution models, (ii) carbon cycles, (iii) hazard assessment and prediction, and (iv) other applications in forest management. Although ML approaches are useful for classification, modeling, and prediction in forest ecology research, further expansion of ML technologies is limited by the lack of suitable data and the relatively “higher threshold” of applications. However, the combined use of multiple algorithms and improved communication and cooperation between ecological researchers and ML developers still present major challenges and tasks for the betterment of future ecological research. We suggest that future applications of ML in ecology will become an increasingly attractive tool for ecologists in the face of “big data” and that ecologists will gain access to more types of data such as sound and video in the near future, possibly opening new avenues of research in forest ecology.
-
Abstract Canada's boreal forests, which occupy approximately 30% of boreal forests worldwide, play an important role in the global carbon budget. However, there is little quantitative information available regarding the spatiotemporal changes in the drought‐induced tree mortality of Canada's boreal forests overall and their associated impacts on biomass carbon dynamics. Here, we develop spatiotemporally explicit estimates of drought‐induced tree mortality and corresponding biomass carbon sink capacity changes in Canada's boreal forests from 1970 to 2020. We show that the average annual tree mortality rate is approximately 2.7%. Approximately 43% of Canada's boreal forests have experienced significantly increasing tree mortality trends (71% of which are located in the western region of the country), and these trends have accelerated since 2002. This increase in tree mortality has resulted in significant biomass carbon losses at an approximate rate of 1.51 ± 0.29 MgC ha −1 year −1 (95% confidence interval) with an approximate total loss of 0.46 ± 0.09 PgC year −1 (95% confidence interval). Under the drought condition increases predicted for this century, the capacity of Canada's boreal forests to act as a carbon sink will be further reduced, potentially leading to a significant positive climate feedback effect.
-
CENTURY 4.0, a simulation model of carbon and nitrogen dynamics of terrestrial ecosystems based on the relationships between climate, soil texture, plant productivity, decomposition and human management, was tested against observed data along the boreal forest transect case study (BFTCS) in central Canada. The results show that the simulated average aboveground biomass and net N mineralization were consistent with observed data. The modeled estimates for soil carbon were consistent with those from regional‐scale empirical regression models. High correlation ( R 2 = 0.92) with data was obtained for the simulation of soil carbon dynamics of the boreal forest, but the model overestimated soil carbon (O–20 cm) by 2–8% for fine‐textured soil and underestimated soil carbon by 5–18% for sandy soil. The effects of climatic variation on temporal changes in biomass and soil carbon storage over the past century were found to be very different for southern and northern sites but relatively insensitive to site‐specific soil texture. The main discrepancies between observed data and CENTURY 4.0 results are associated with the effects of soil texture and an inadequate representation of fire disturbance on C dynamics of boreal forests. Further improvements, particularly in the representation of disturbance regimes and in the simulation of slow pool C dynamics, are suggested to enhance its predictive capability.