Accéder au contenu Accéder au menu principal Accéder à la recherche
Accéder au contenu Accéder au menu principal
UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
UQAM logo
Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • Bibliographie
  • Accueil
  1. Vitrine des bibliographies
  2. Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  3. Résultats
  • Accueil

Votre recherche

Réinitialiser la recherche

Aide

L’interface de recherche est composée de trois sections : Rechercher, Explorer et Résultats. Celles-ci sont décrites en détail ci-dessous.

Vous pouvez lancer une recherche aussi bien à partir de la section Rechercher qu’à partir de la section Explorer.

Rechercher

Cette section affiche vos critères de recherche courants et vous permet de soumettre des mots-clés à chercher dans la bibliographie.

  • Chaque nouvelle soumission ajoute les mots-clés saisis à la liste des critères de recherche.
  • Pour lancer une nouvelle recherche plutôt qu’ajouter des mots-clés à la recherche courante, utilisez le bouton Réinitialiser la recherche, puis entrez vos mots-clés.
  • Pour remplacer un mot-clé déjà soumis, veuillez d’abord le retirer en décochant sa case à cocher, puis soumettre un nouveau mot-clé.
  • Vous pouvez contrôler la portée de votre recherche en choisissant où chercher. Les options sont :
    • Partout : repère vos mots-clés dans tous les champs des références bibliographiques ainsi que dans le contenu textuel des documents disponibles.
    • Dans les auteurs ou contributeurs : repère vos mots-clés dans les noms d’auteurs ou de contributeurs.
    • Dans les titres : repère vos mots-clés dans les titres.
    • Dans tous les champs : repère vos mots-clés dans tous les champs des notices bibliographiques.
    • Dans les documents : repère vos mots-clés dans le contenu textuel des documents disponibles.
  • Vous pouvez utiliser les opérateurs booléens avec vos mots-clés :
    • ET : repère les références qui contiennent tous les termes fournis. Ceci est la relation par défaut entre les termes séparés d’un espace. Par exemple, a b est équivalent à a ET b.
    • OU : repère les références qui contiennent n’importe lequel des termes fournis. Par exemple, a OU b.
    • SAUF : exclut les références qui contiennent le terme fourni. Par exemple, SAUF a.
    • Les opérateurs booléens doivent être saisis en MAJUSCULES.
  • Vous pouvez faire des groupements logiques (avec les parenthèses) pour éviter les ambiguïtés lors de la combinaison de plusieurs opérateurs booléens. Par exemple, (a OU b) ET c.
  • Vous pouvez demander une séquence exacte de mots (avec les guillemets droits), par exemple "a b c". Par défaut la différence entre les positions des mots est de 1, ce qui signifie qu’une référence sera repérée si elle contient les mots et qu’ils sont consécutifs. Une distance maximale différente peut être fournie (avec le tilde), par exemple "a b"~2 permet jusqu’à un terme entre a et b, ce qui signifie que la séquence a c b pourrait être repérée aussi bien que a b.
  • Vous pouvez préciser que certains termes sont plus importants que d’autres (avec l’accent circonflexe). Par exemple, a^2 b c^0.5 indique que a est deux fois plus important que b dans le calcul de pertinence des résultats, tandis que c est de moitié moins important. Ce type de facteur peut être appliqué à un groupement logique, par exemple (a b)^3 c.
  • La recherche par mots-clés est insensible à la casse et les accents et la ponctuation sont ignorés.
  • Les terminaisons des mots sont amputées pour la plupart des champs, tels le titre, le résumé et les notes. L’amputation des terminaisons vous évite d’avoir à prévoir toutes les formes possibles d’un mot dans vos recherches. Ainsi, les termes municipal, municipale et municipaux, par exemple, donneront tous le même résultat. L’amputation des terminaisons n’est pas appliquée au texte des champs de noms, tels auteurs/contributeurs, éditeur, publication.

Explorer

Cette section vous permet d’explorer les catégories associées aux références.

  • Les catégories peuvent servir à affiner votre recherche. Cochez une catégorie pour l’ajouter à vos critères de recherche. Les résultats seront alors restreints aux références qui sont associées à cette catégorie.
  • Dé-cochez une catégorie pour la retirer de vos critères de recherche et élargir votre recherche.
  • Les nombres affichés à côté des catégories indiquent combien de références sont associées à chaque catégorie considérant les résultats de recherche courants. Ces nombres varieront en fonction de vos critères de recherche, de manière à toujours décrire le jeu de résultats courant. De même, des catégories et des facettes entières pourront disparaître lorsque les résultats de recherche ne contiennent aucune référence leur étant associées.
  • Une icône de flèche () apparaissant à côté d’une catégorie indique que des sous-catégories sont disponibles. Vous pouvez appuyer sur l’icône pour faire afficher la liste de ces catégories plus spécifiques. Par la suite, vous pouvez appuyer à nouveau pour masquer la liste. L’action d’afficher ou de masquer les sous-catégories ne modifie pas vos critères de recherche; ceci vous permet de rapidement explorer l’arborescence des catégories, si désiré.

Résultats

Cette section présente les résultats de recherche. Si aucun critère de recherche n’a été fourni, elle montre toute la bibliographie (jusqu’à 20 références par page).

  • Chaque référence de la liste des résultats est un hyperlien vers sa notice bibliographique complète. À partir de la notice, vous pouvez continuer à explorer les résultats de recherche en naviguant vers les notices précédentes ou suivantes de vos résultats de recherche, ou encore retourner à la liste des résultats.
  • Des hyperliens supplémentaires, tels que Consulter le document ou Consulter sur [nom d’un site web], peuvent apparaître sous un résultat de recherche. Ces liens vous fournissent un accès rapide à la ressource, des liens que vous trouverez également dans la notice bibliographique.
  • Le bouton Résumés vous permet d’activer ou de désactiver l’affichage des résumés dans la liste des résultats de recherche. Toutefois, activer l’affichage des résumés n’aura aucun effet sur les résultats pour lesquels aucun résumé n’est disponible.
  • Diverses options sont fournies pour permettre de contrôler l’ordonnancement les résultats de recherche. L’une d’elles est l’option de tri par Pertinence, qui classe les résultats du plus pertinent au moins pertinent. Le score utilisé à cette fin prend en compte la fréquence des mots ainsi que les champs dans lesquels ils apparaissent. Par exemple, si un terme recherché apparaît fréquemment dans une référence ou est l’un d’un très petit nombre de termes utilisé dans cette référence, cette référence aura probablement un score plus élevé qu’une autre où le terme apparaît moins fréquemment ou qui contient un très grand nombre de mots. De même, le score sera plus élevé si un terme est rare dans l’ensemble de la bibliographie que s’il est très commun. De plus, si un terme de recherche apparaît par exemple dans le titre d’une référence, le score de cette référence sera plus élevé que s’il apparaissait dans un champ moins important tel le résumé.
  • Le tri par Pertinence n’est disponible qu’après avoir soumis des mots-clés par le biais de la section Rechercher.
  • Les catégories sélectionnées dans la section Explorer n’ont aucun effet sur le tri par pertinence. Elles ne font que filtrer la liste des résultats.
Dans les auteurs ou contributeurs
  • "Peng, Changhui"

Résultats 425 ressources

PertinenceDate décroissanteDate croissanteAuteur A-ZAuteur Z-ATitre A-ZTitre Z-A
  • 1
  • ...
  • 4
  • 5
  • 6
  • 7
  • 8
  • ...
  • 22
  • Page 6 de 22
Résumés
  • Zhou, X., Peng, C., Dang, Q.-L., Chen, J., & Parton, S. (2007). A Simulation of Temporal and Spatial Variations in Carbon at Landscape Level: A Case Study for Lake Abitibi Model Forest in Ontario, Canada. Mitigation and Adaptation Strategies for Global Change, 12(4), 525–543. https://doi.org/10.1007/s11027-006-4583-5
    Consulter sur link.springer.com
  • Epule, T. E., Dhiba, D., Etongo, D., Peng, C., & Lepage, L. (2021). Identifying maize yield and precipitation gaps in Uganda. SN Applied Sciences, 3(5), 537. https://doi.org/10.1007/s42452-021-04532-5

    Abstract In sub-Saharan Africa (SSA), precipitation is an important driver of agricultural production. In Uganda, maize production is essentially rain-fed. However, due to changes in climate, projected maize yield targets have not often been met as actual observed maize yields are often below simulated/projected yields. This outcome has often been attributed to parallel gaps in precipitation. This study aims at identifying maize yield and precipitation gaps in Uganda for the period 1998–2017. Time series historical actual observed maize yield data (hg/ha/year) for the period 1998–2017 were collected from FAOSTAT. Actual observed maize growing season precipitation data were also collected from the climate portal of World Bank Group for the period 1998–2017. The simulated or projected maize yield data and the simulated or projected growing season precipitation data were simulated using a simple linear regression approach. The actual maize yield and actual growing season precipitation data were now compared with the simulated maize yield data and simulated growing season precipitation to establish the yield gaps. The results show that three key periods of maize yield gaps were observed (period one: 1998, period two: 2004–2007 and period three: 2015–2017) with parallel precipitation gaps. However, in the entire series (1998–2017), the years 2008–2009 had no yield gaps yet, precipitation gaps were observed. This implies that precipitation is not the only driver of maize yields in Uganda. In fact, this is supported by a low correlation between precipitation gaps and maize yield gaps of about 6.3%. For a better understanding of cropping systems in SSA, other potential drivers of maize yield gaps in Uganda such as soils, farm inputs, crop pests and diseases, high yielding varieties, literacy, and poverty levels should be considered.

    Consulter sur link.springer.com
  • Liu, W., Yu, Z., Xie, X., Von Gadow, K., & Peng, C. (2018). A critical analysis of the carbon neutrality assumption in life cycle assessment of forest bioenergy systems. Environmental Reviews, 26(1), 93–101. https://doi.org/10.1139/er-2017-0060

    This study presents a critical analysis regarding the assumption of carbon neutrality in life cycle assessment (LCA) models that assess climate change impacts of bioenergy usage. We identified a complex of problems in the carbon neutrality assumption, especially regarding bioenergy derived from forest residues. In this study, we summarized several issues related to carbon neutral assumptions, with particular emphasis on possible carbon accounting errors at the product level. We analyzed errors in estimating emissions in the supply chain, direct and indirect emissions due to forest residue extraction, biogenic CO 2 emission from biomass combustion for energy, and other effects related to forest residue extraction. Various modeling approaches are discussed in detail. We concluded that there is a need to correct accounting errors when estimating climate change impacts and proposed possible remedies. To accurately assess climate change impacts of bioenergy use, greater efforts are required to improve forest carbon cycle modeling, especially to identify and correct pitfalls associated with LCA accounting, forest residue extraction effects on forest fire risk and biodiversity. Uncertainties in accounting carbon emissions in LCA are also highlighted, and associated risks are discussed.

    Consulter sur www.nrcresearchpress.com
  • Zhou, X., Peng, C., Dang, Q.-L., Chen, J., & Parton, S. (2005). Predicting forest growth and yield in northeastern Ontario using the process-based model of TRIPLEX1.0. Canadian Journal of Forest Research, 35(9), 2268–2280. https://doi.org/10.1139/x05-149

    Process-based carbon dynamic models are rarely validated against traditional forest growth and yield data and are difficult to use as a practical tool for forest management. To bridge the gap between empirical and process-based models, a simulation using a hybrid model of TRIPLEX1.0 was performed for the forest growth and yield of the boreal forest ecosystem in the Lake Abitibi Model Forest in northeastern Ontario. The model was tested using field measurements, forest inventory data, and the normal yield table. The model simulations of tree height and diameter at breast height (DBH) showed a good agreement with measurements for black spruce (Picea mariana (Mill.) BSP), jack pine (Pinus banksiana Lamb.), and trembling aspen (Populus tremuloides Michx.). The coefficients of determination (R 2 ) between simulated values and permanent sample plot measurements were 0.92 for height and 0.95 for DBH. At the landscape scale, model predictions were compared with forest inventory data and the normal yield table. The R 2 ranged from 0.73 to 0.89 for tree height and from 0.72 to 0.85 for DBH. The simulated basal area is consistent with the normal yield table. The R 2 for basal area ranged from 0.82 to 0.96 for black spruce, jack pine, and trembling aspen for each site class. This study demonstrated the feasibility of testing the performance of the process-based carbon dynamic model using traditional forest growth and yield data and the ability of the TRIPLEX1.0 model for predicting growth and yield variables. The current work also introduces a means to test model accuracy and its prediction of forest stand variables to provide a complement to empirical growth and yield models for forest management practices, as well as for investigating climate change impacts on forest growth and yield in regions without sufficient established permanent sample plots and remote areas without suitable field measurements.

    Consulter sur www.nrcresearchpress.com
  • Jiang, H., Apps, M. J., Peng, C., Zhang, Y., & Liu, J. (2002). Modelling the influence of harvesting on Chinese boreal forest carbon dynamics. Forest Ecology and Management, 169(1–2), 65–82. https://doi.org/10.1016/S0378-1127(02)00299-2
    Consulter sur linkinghub.elsevier.com
  • Peng, C., Liu, J., Dang, Q., Apps, M. J., & Jiang, H. (2002). TRIPLEX: a generic hybrid model for predicting forest growth and carbon and nitrogen dynamics. Ecological Modelling, 153(1–2), 109–130. https://doi.org/10.1016/S0304-3800(01)00505-1
    Consulter sur linkinghub.elsevier.com
  • Wang, W., Peng, C., Kneeshaw, D. D., Larocque, G. R., & Luo, Z. (2012). Drought-induced tree mortality: ecological consequences, causes, and modeling. Environmental Reviews, 20(2), 109–121. https://doi.org/10.1139/a2012-004

    Drought-induced tree mortality, which rapidly alters forest ecosystem composition, structure, and function, as well as the feedbacks between the biosphere and climate, has occurred worldwide over the past few decades, and is expected to increase pervasively as climate change progresses. The objectives of this review are to (1) highlight the likely ecological consequences of drought-induced tree mortality, (2) synthesize the hypotheses related to drought-induced tree mortality, (3) discuss the implications of current knowledge for modeling tree mortality processes under climate change, and (4) highlight future research needs. First, we emphasize the likely ecological consequences of tree mortality from ecosystem to biome to continental scales. We then document and criticize multiple non-exclusive tree mortality hypotheses (e.g., carbon starvation — carbon supply is less than carbon demand; and hydraulic failure — desiccation from failed water transport) from a more comprehensive ecological perspective. Next, we extend a forest decline concept model, Manion’s framework, by considering new emerging environmental conditions, for a more thorough understanding of the effects of climate change on forest decline. We find that an increase in drought frequency and (or) climate-change-type droughts may trigger increased background tree mortality rates and severe forest dieback events, accelerating species turnover and ecological regime shifts. The contribution of CO 2 fertilization, rising temperature within the optimal growth range, and increased nitrogen deposition may defer or reduce this trend in tree mortality, but such contributions will vary between locations, species, and tree sizes. Multiple hypotheses proposed for drought-induced tree mortality are discussed, but coupling carbon and water cycles could help resolve the debate. The absence of a physiological understanding of tree mortality mechanisms limits the predictive ability of current models from stand-level process-based models to dynamic global vegetation models. We thus suggest that long-term observations, experiments, and models should be tightly interwoven during the research process to better forecast future climate changes and evaluate their impacts on forests.

    Consulter sur www.nrcresearchpress.com
  • Epule, T. E., Chehbouni, A., Dhiba, D., Moto, M. W., & Peng, C. (2021). African climate change policy performance index. Environmental and Sustainability Indicators, 12, 100163. https://doi.org/10.1016/j.indic.2021.100163
    Consulter sur linkinghub.elsevier.com
  • Jiang, H., Apps, M. J., Zhang, Y., Peng, C., & Woodard, P. M. (1999). Modelling the spatial pattern of net primary productivity in Chinese forests. Ecological Modelling, 122(3), 275–288. https://doi.org/10.1016/S0304-3800(99)00142-8
    Consulter sur linkinghub.elsevier.com
  • Gu, B., Dong, X., Peng, C., Luo, W., Chang, J., & Ge, Y. (2012). The long-term impact of urbanization on nitrogen patterns and dynamics in Shanghai, China. Environmental Pollution, 171, 30–37. https://doi.org/10.1016/j.envpol.2012.07.015
    Consulter sur linkinghub.elsevier.com
  • Liu, Z., Peng, C., Xiang, W., Tian, D., Deng, X., & Zhao, M. (2010). Application of artificial neural networks in global climate change and ecological research: An overview. Chinese Science Bulletin, 55(34), 3853–3863. https://doi.org/10.1007/s11434-010-4183-3
    Consulter sur link.springer.com
  • Lei, X., Lu, Y., Peng, C., Zhang, X., Chang, J., & Hong, L. (2007). Growth and structure development of semi-natural larch-spruce-fir (Larix olgensis–Picea jezoensis–Abies nephrolepis) forests in northeast China: 12-year results after thinning. Forest Ecology and Management, 240(1–3), 165–177. https://doi.org/10.1016/j.foreco.2006.12.019
    Consulter sur linkinghub.elsevier.com
  • Zhao, S., Peng, C., Jiang, H., Tian, D., Lei, X., & Zhou, X. (2006). Land use change in Asia and the ecological consequences. Ecological Research, 21(6), 890–896. https://doi.org/10.1007/s11284-006-0048-2

    Abstract Viewed within a historical context, Asia has experienced dramatic land transformations, and currently more than 50% of Asian land area is under agriculture. The consequences of this transformation are manifold. Southeast Asia has the highest deforestation rate of any major tropical region. Many of the world's large rivers and lakes in Asia have been heavily degraded. About 11 of 19 world megacities with more than 10 million inhabitants are in Asia. These land use activities have resulted in substantial negative ecological consequences, including increased anthropogenic CO 2 emissions, deteriorated air and water quality, alteration of regional climate, an increase of disease and a loss of biodiversity. Although land use occurs at the local level, it has the potential to cause ecological impact across local, regional and global scales. Reducing the negative environmental impacts of land use change while maintaining economic viability and social acceptability is an major challenge for most developing countries in Asia.

    Consulter sur esj-journals.onlinelibrary.wiley.com
  • Fang, X., Zhu, Q., Ren, L., Chen, H., Wang, K., & Peng, C. (2018). Large-scale detection of vegetation dynamics and their potential drivers using MODIS images and BFAST: A case study in Quebec, Canada. Remote Sensing of Environment, 206, 391–402. https://doi.org/10.1016/j.rse.2017.11.017
    Consulter sur linkinghub.elsevier.com
  • Li, Q., Lei, Z., Song, X., Zhang, Z., Ying, Y., & Peng, C. (2018). Biochar amendment decreases soil microbial biomass and increases bacterial diversity in Moso bamboo ( Phyllostachys edulis ) plantations under simulated nitrogen deposition. Environmental Research Letters, 13(4), 044029. https://doi.org/10.1088/1748-9326/aab53a
    Consulter sur iopscience.iop.org
  • Li, M., He, N., Xu, L., Peng, C., Chen, H., & Yu, G. (2023). Eco-CCUS: A cost-effective pathway towards carbon neutrality in China. Renewable and Sustainable Energy Reviews, 183, 113512. https://doi.org/10.1016/j.rser.2023.113512
    Consulter sur linkinghub.elsevier.com
  • Zhang, J., Lv, J., Li, Q., Ying, Y., Peng, C., & Song, X. (2017). Effects of nitrogen deposition and management practices on leaf litterfall and N and P return in a Moso bamboo forest. Biogeochemistry, 134(1–2), 115–124. https://doi.org/10.1007/s10533-017-0349-2
    Consulter sur link.springer.com
  • Du, M., Peng, C., Wang, X., Chen, H., Wang, M., & Zhu, Q. (2017). Quantification of methane emissions from municipal solid waste landfills in China during the past decade. Renewable and Sustainable Energy Reviews, 78, 272–279. https://doi.org/10.1016/j.rser.2017.04.082
    Consulter sur linkinghub.elsevier.com
  • Song, X., Peng, C., Zhou, G., Gu, H., Li, Q., & Zhang, C. (2016). Dynamic allocation and transfer of non-structural carbohydrates, a possible mechanism for the explosive growth of Moso bamboo (Phyllostachys heterocycla). Scientific Reports, 6(1), 25908. https://doi.org/10.1038/srep25908

    Abstract Moso bamboo can rapidly complete its growth in both height and diameter within only 35–40 days after shoot emergence. However, the underlying mechanism for this “explosive growth” remains poorly understood. We investigated the dynamics of non-structural carbohydrates (NSCs) in shoots and attached mature bamboos over a 20-month period. The results showed that Moso bamboos rapidly completed their height and diameter growth within 38 days. At the same time, attached mature bamboos transferred almost all the NSCs of their leaves, branches and especially trunks and rhizomes to the “explosively growing” shoots via underground rhizomes for the structural growth and metabolism of shoots. Approximately 4 months after shoot emergence, this transfer stopped when the leaves of the young bamboos could independently provide enough photoassimilates to meet the carbon demands of the young bamboos. During this period, the NSC content of the leaves, branches, trunks and rhizomes of mature bamboos declined by 1.5, 23, 28 and 5 fold, respectively. The trunk contributed the most NSCs to the shoots. Our findings provide new insight and a possible rational mechanism explaining the “explosive growth” of Moso bamboo and shed new light on understanding the role of NSCs in the rapid growth of Moso bamboo.

    Consulter sur www.nature.com
  • Xu, X., Gao, Q., Peng, C., Cui, X., Liu, Y., & Jiang, L. (2014). Integrating global socio-economic influences into a regional land use change model for China. Frontiers of Earth Science, 8(1), 81–92. https://doi.org/10.1007/s11707-013-0421-8
    Consulter sur link.springer.com
  • 1
  • ...
  • 4
  • 5
  • 6
  • 7
  • 8
  • ...
  • 22
  • Page 6 de 22
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Flux web personnalisé
Dernière mise à jour depuis la base de données : 05/11/2025 06:00 (UTC)

Explorer

Auteur·e·s

  • Blanchet, Jean-Pierre (1)
  • Peng, Changhui (424)

Type de ressource

  • Article de colloque (1)
  • Article de revue (423)
  • Livre (1)

Année de publication

  • Entre 1900 et 1999 (6)
    • Entre 1990 et 1999 (6)
      • 1997 (1)
      • 1998 (2)
      • 1999 (3)
  • Entre 2000 et 2025 (419)
    • Entre 2000 et 2009 (51)
      • 2000 (3)
      • 2001 (3)
      • 2002 (7)
      • 2003 (3)
      • 2004 (2)
      • 2005 (3)
      • 2006 (5)
      • 2007 (7)
      • 2008 (8)
      • 2009 (10)
    • Entre 2010 et 2019 (215)
      • 2010 (6)
      • 2011 (25)
      • 2012 (13)
      • 2013 (22)
      • 2014 (27)
      • 2015 (13)
      • 2016 (22)
      • 2017 (18)
      • 2018 (27)
      • 2019 (42)
    • Entre 2020 et 2025 (153)
      • 2020 (31)
      • 2021 (41)
      • 2022 (27)
      • 2023 (34)
      • 2024 (20)

Explorer

UQAM - Université du Québec à Montréal

  • Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • bibliotheques@uqam.ca

Accessibilité Web