Votre recherche
Résultats 437 ressources
-
Abstract Forest soils play an important role in controlling global warming by reducing atmospheric methane (CH 4 ) concentrations. However, little attention has been paid to how nitrogen (N) deposition may alter microorganism communities that are related to the CH 4 cycle or CH 4 oxidation in subtropical forest soils. We investigated the effects of N addition (0, 30, 60, or 90 kg N ha −1 yr −1 ) on soil CH 4 flux and methanotroph and methanogen abundance, diversity, and community structure in a Moso bamboo ( Phyllostachys edulis ) forest in subtropical China. N addition significantly increased methanogen abundance but reduced both methanotroph and methanogen diversity. Methanotroph and methanogen community structures under the N deposition treatments were significantly different from those of the control. In N deposition treatments, the relative abundance of Methanoculleus was significantly lower than that in the control. Soil pH was the key factor regulating the changes in methanotroph and methanogen diversity and community structure. The CH 4 emission rate increased with N addition and was negatively correlated with both methanotroph and methanogen diversity but positively correlated with methanogen abundance. Overall, our results suggested that N deposition can suppress CH 4 uptake by altering methanotroph and methanogen abundance, diversity, and community structure in subtropical Moso bamboo forest soils.
-
Abstract Background The accurate estimation of soil nutrient content is particularly important in view of its impact on plant growth and forest regeneration. In order to investigate soil nutrient content and quality for the natural regeneration of Dacrydium pectinatum communities in China, designing advanced and accurate estimation methods is necessary. Methods This study uses machine learning techniques created a series of comprehensive and novel models from which to evaluate soil nutrient content. Soil nutrient evaluation methods were built by using six support vector machines and four artificial neural networks. Results The generalized regression neural network model was the best artificial neural network evaluation model with the smallest root mean square error (5.1), mean error (− 0.85), and mean square prediction error (29). The accuracy rate of the combined k -nearest neighbors ( k -NN) local support vector machines model (i.e. k -nearest neighbors -support vector machine (KNNSVM)) for soil nutrient evaluation was high, comparing to the other five partial support vector machines models investigated. The area under curve value of generalized regression neural network (0.6572) was the highest, and the cross-validation result showed that the generalized regression neural network reached 92.5%. Conclusions Both the KNNSVM and generalized regression neural network models can be effectively used to evaluate soil nutrient content and quality grades in conjunction with appropriate model variables. Developing a new feasible evaluation method to assess soil nutrient quality for Dacrydium pectinatum , results from this study can be used as a reference for the adaptive management of rare and endangered tree species. This study, however, found some uncertainties in data acquisition and model simulations, which will be investigated in upcoming studies.
-
Abstract Biomass has been promoted as a promising energy resource to mitigate global climate change. To evaluate the contribution of biomass utilization to climate change mitigation under the “Grain for Green” program in Northern Shaanxi, China, a soil carbon dynamic model and a life cycle assessment model were integrated to examine the benefits of using Caragana korshinskii Kom. as an energy crop. We found that the annual dry biomass output is maintained at 0.7 Tg during the simulation period (2020–2097). Due to the compensatory effect of biomass regrowth, the global warming potential of biomass‐derived CO 2 emissions is approximately 0.045; therefore, the total annual biogenic CO 2 emission is 57,211 ± 6,168 Mg CO 2 eq. The total annual life cycle CO 2 emissions approach 867,072 Mg CO 2 eq yr −1 . Under the scenario of no biomass removal, final carbon storage ranges from 15.7 to 19.3 TgC, and the highest carbon sequestration rate is 0.47 TgC yr −1 . In comparison with the no biomass removal scenario, the carbon sequestration rate (close to 0 MgC yr −1 ) in the biomass utilization scenario indicates a carbon loss; however, a portion of the carbon loss (31.39–62.09%) can be offset by carbon emission reductions from the substitution of fossil fuels.
-
The study was to investigate the change patterns of soil organic carbon (SOC), total nitrogen (TN), and soil C/N (C/N) in each soil sublayer along vegetation restoration in subtropical China. We collected soil samples in four typical plant communities along a restoration chronosequence. The soil physicochemical properties, fine root, and litter biomass were measured. Our results showed the proportion of SOC stocks (Cs) and TN stocks (Ns) in 20–30 and 30–40 cm soil layers increased, whereas that in 0–10 and 10–20 cm soil layers decreased. Different but well-constrained C/N was found among four restoration stages in each soil sublayer. The effect of soil factors was greater on the deep soil than the surface soil, while the effect of vegetation factors was just the opposite. Our study indicated that vegetation restoration promoted the uniform distribution of SOC and TN on the soil profile. The C/N was relatively stable along vegetation restoration in each soil layer. The accumulation of SOC and TN in the surface soil layer was controlled more by vegetation factors, while that in the lower layer was controlled by both vegetation factors and soil factors.
-
Abstract The fate of soil organic carbon (SOC) under warming is poorly understood, particularly across large extents and in the whole‐soil profile. Using a data‐model integration approach applied across the globe, we find that downward movement of SOC along the soil profile reduces SOC loss under warming. We predict that global SOC stocks (down to 2 m) will decline by 4% (~80 Pg) on average when SOC reaches the steady state under 2°C warming, assuming no changes in net primary productivity (NPP). To compensate such decline (i.e. maintain current SOC stocks), a 3% increase of NPP is required. Without the downward SOC movement, global SOC declines by 15%, while a 20% increase in NPP is needed to compensate that loss. This vital role of downward SOC movement in controlling whole‐soil profile SOC dynamics in response to warming is due to the protection afforded to downward‐moving SOC by depth, indicated by much longer residence times of SOC in deeper layers. Additionally, we find that this protection could not be counteracted by promoted decomposition due to the priming of downward‐moving new SOC from upper layers on native old SOC in deeper layers. This study provides the first estimation of whole‐soil SOC changes under warming and additional NPP required to compensate such changes across the globe, and reveals the vital role of downward movement of SOC in reducing SOC loss under global warming.
-
Abstract Soil erosion occurs extensively across China, leading to severe degradation of the land and ecosystem services. However, the spatial and temporal variations in soil erodibility ( k ) and the distribution of soil erosion across land use types and slopes remain unclear. We synthesized the results from 325 sites published in 152 literatures to analyze the factors affecting the k , such as land use type, climate, topography, soil, and vegetation restoration age. The results showed that areas with slopes >25° had a larger k factor ( k = 0.1047) than did those with slope <6° ( k = 0.0637) or 6–25° ( k = 0.0832). The k from 2006 to 2011 ( k = 0.0725) was higher than that from 1999 to 2005 ( k = 0.058) and that from 2012 to 2016 ( k = 0.0631). The k value initially increased with vegetation restoration age and then gradually decreased. Land use also had an impact on the k factor, with the k factor of cropland ( k = 0.0697) being higher than that of grassland ( k = 0.0663) but lower than that of forest ( k = 0.0967). Across China, North Shaanxi, Heilongjiang, and South Guizhou, which are located in the Loess Plateau in Northwest China, the Black Soil region of Northeast China, and the Karst areas in Southwest China, respectively, were the three most severely eroded regions due to hydraulic erosion, frost‐thaw erosion, and high‐intensity erosion, respectively. Overall, the most important factors affecting the k were soil characteristics, followed by topography and climate. Among them, soil nitrogen and precipitation were the two most critical factors influencing the k . , Key Points Grassland had lower soil erodibility than had cropland and forestland North Shaanxi, Heilongjiang, and South Guizhou were the three most severely eroded regions Precipitation and soil N play critical roles in controlling soil erosion
-
Abstract A total of 11,612 black spruce trees were measured from permanent sample plots across the boreal and central regions of Ontario and were used to fit the well-known Chapman-Richards growth model at provincial, regional, and ecoregional scales. The results suggest that the height-diameter relationships of black spruce vary with different geographic regions and scales. There were significant variations in height-diameter relationships for black spruce between boreal and central regions as well as among some of the seven ecoregions. The ecoregion-based height-diameter models presented here will provide more accurate predictions for tree height and, consequently, tree volume than these models developed at both provincial and regional scales. Furthermore, the heterogeneity of tree species should be considered in developing and applying ecoregion-based height-diameter models for predicting local tree height.
-
The location and mechanisms responsible for the carbon sink in northern mid-latitude lands are uncertain. Here, we used an improved estimation method of forest biomass and a 50-year national forest resource inventory in China to estimate changes in the storage of living biomass between 1949 and 1998. Our results suggest that Chinese forests released about 0.68 petagram of carbon between 1949 and 1980, for an annual emission rate of 0.022 petagram of carbon. Carbon storage increased significantly after the late 1970s from 4.38 to 4.75 petagram of carbon by 1998, for a mean accumulation rate of 0.021 petagram of carbon per year, mainly due to forest expansion and regrowth. Since the mid-1970s, planted forests (afforestation and reforestation) have sequestered 0.45 petagram of carbon, and their average carbon density increased from 15.3 to 31.1 megagrams per hectare, while natural forests have lost an additional 0.14 petagram of carbon, suggesting that carbon sequestration through forest management practices addressed in the Kyoto Protocol could help offset industrial carbon dioxide emissions.
-
Climate change scenarios established by the Intergovernmental Panel on Climate Change have developed a significant tool for analyzing, modeling, and predicting future climate change impacts in different research fields after more than 30 years of development and refinement. In the wake of future climate change, the changes in forest structure and functions have become a frontier and focal area of global change research. This study mainly reviews and synthesizes climate change scenarios and their applications in forest ecosystem research over the past decade. These applications include changes in (1) forest structure and spatial vegetation distribution, (2) ecosystem structure, (3) ecosystem services, and (4) ecosystem stability. Although climate change scenarios are useful for predicting future climate change impacts on forest ecosystems, the accuracy of model simulations needs to be further improved. Based on existing studies, climate change scenarios are used in future simulation applications to construct a biomonitoring network platform integrating observations and predictions for better conservation of species diversity.