Accéder au contenu Accéder au menu principal Accéder à la recherche
Accéder au contenu Accéder au menu principal
UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
UQAM logo
Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • Bibliographie
  • Accueil
  1. Vitrine des bibliographies
  2. Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  3. Résultats
  • Accueil

Votre recherche

Réinitialiser la recherche

Aide

L’interface de recherche est composée de trois sections : Rechercher, Explorer et Résultats. Celles-ci sont décrites en détail ci-dessous.

Vous pouvez lancer une recherche aussi bien à partir de la section Rechercher qu’à partir de la section Explorer.

Rechercher

Cette section affiche vos critères de recherche courants et vous permet de soumettre des mots-clés à chercher dans la bibliographie.

  • Chaque nouvelle soumission ajoute les mots-clés saisis à la liste des critères de recherche.
  • Pour lancer une nouvelle recherche plutôt qu’ajouter des mots-clés à la recherche courante, utilisez le bouton Réinitialiser la recherche, puis entrez vos mots-clés.
  • Pour remplacer un mot-clé déjà soumis, veuillez d’abord le retirer en décochant sa case à cocher, puis soumettre un nouveau mot-clé.
  • Vous pouvez contrôler la portée de votre recherche en choisissant où chercher. Les options sont :
    • Partout : repère vos mots-clés dans tous les champs des références bibliographiques ainsi que dans le contenu textuel des documents disponibles.
    • Dans les auteurs ou contributeurs : repère vos mots-clés dans les noms d’auteurs ou de contributeurs.
    • Dans les titres : repère vos mots-clés dans les titres.
    • Dans tous les champs : repère vos mots-clés dans tous les champs des notices bibliographiques.
    • Dans les documents : repère vos mots-clés dans le contenu textuel des documents disponibles.
  • Vous pouvez utiliser les opérateurs booléens avec vos mots-clés :
    • ET : repère les références qui contiennent tous les termes fournis. Ceci est la relation par défaut entre les termes séparés d’un espace. Par exemple, a b est équivalent à a ET b.
    • OU : repère les références qui contiennent n’importe lequel des termes fournis. Par exemple, a OU b.
    • SAUF : exclut les références qui contiennent le terme fourni. Par exemple, SAUF a.
    • Les opérateurs booléens doivent être saisis en MAJUSCULES.
  • Vous pouvez faire des groupements logiques (avec les parenthèses) pour éviter les ambiguïtés lors de la combinaison de plusieurs opérateurs booléens. Par exemple, (a OU b) ET c.
  • Vous pouvez demander une séquence exacte de mots (avec les guillemets droits), par exemple "a b c". Par défaut la différence entre les positions des mots est de 1, ce qui signifie qu’une référence sera repérée si elle contient les mots et qu’ils sont consécutifs. Une distance maximale différente peut être fournie (avec le tilde), par exemple "a b"~2 permet jusqu’à un terme entre a et b, ce qui signifie que la séquence a c b pourrait être repérée aussi bien que a b.
  • Vous pouvez préciser que certains termes sont plus importants que d’autres (avec l’accent circonflexe). Par exemple, a^2 b c^0.5 indique que a est deux fois plus important que b dans le calcul de pertinence des résultats, tandis que c est de moitié moins important. Ce type de facteur peut être appliqué à un groupement logique, par exemple (a b)^3 c.
  • La recherche par mots-clés est insensible à la casse et les accents et la ponctuation sont ignorés.
  • Les terminaisons des mots sont amputées pour la plupart des champs, tels le titre, le résumé et les notes. L’amputation des terminaisons vous évite d’avoir à prévoir toutes les formes possibles d’un mot dans vos recherches. Ainsi, les termes municipal, municipale et municipaux, par exemple, donneront tous le même résultat. L’amputation des terminaisons n’est pas appliquée au texte des champs de noms, tels auteurs/contributeurs, éditeur, publication.

Explorer

Cette section vous permet d’explorer les catégories associées aux références.

  • Les catégories peuvent servir à affiner votre recherche. Cochez une catégorie pour l’ajouter à vos critères de recherche. Les résultats seront alors restreints aux références qui sont associées à cette catégorie.
  • Dé-cochez une catégorie pour la retirer de vos critères de recherche et élargir votre recherche.
  • Les nombres affichés à côté des catégories indiquent combien de références sont associées à chaque catégorie considérant les résultats de recherche courants. Ces nombres varieront en fonction de vos critères de recherche, de manière à toujours décrire le jeu de résultats courant. De même, des catégories et des facettes entières pourront disparaître lorsque les résultats de recherche ne contiennent aucune référence leur étant associées.
  • Une icône de flèche () apparaissant à côté d’une catégorie indique que des sous-catégories sont disponibles. Vous pouvez appuyer sur l’icône pour faire afficher la liste de ces catégories plus spécifiques. Par la suite, vous pouvez appuyer à nouveau pour masquer la liste. L’action d’afficher ou de masquer les sous-catégories ne modifie pas vos critères de recherche; ceci vous permet de rapidement explorer l’arborescence des catégories, si désiré.

Résultats

Cette section présente les résultats de recherche. Si aucun critère de recherche n’a été fourni, elle montre toute la bibliographie (jusqu’à 20 références par page).

  • Chaque référence de la liste des résultats est un hyperlien vers sa notice bibliographique complète. À partir de la notice, vous pouvez continuer à explorer les résultats de recherche en naviguant vers les notices précédentes ou suivantes de vos résultats de recherche, ou encore retourner à la liste des résultats.
  • Des hyperliens supplémentaires, tels que Consulter le document ou Consulter sur [nom d’un site web], peuvent apparaître sous un résultat de recherche. Ces liens vous fournissent un accès rapide à la ressource, des liens que vous trouverez également dans la notice bibliographique.
  • Le bouton Résumés vous permet d’activer ou de désactiver l’affichage des résumés dans la liste des résultats de recherche. Toutefois, activer l’affichage des résumés n’aura aucun effet sur les résultats pour lesquels aucun résumé n’est disponible.
  • Diverses options sont fournies pour permettre de contrôler l’ordonnancement les résultats de recherche. L’une d’elles est l’option de tri par Pertinence, qui classe les résultats du plus pertinent au moins pertinent. Le score utilisé à cette fin prend en compte la fréquence des mots ainsi que les champs dans lesquels ils apparaissent. Par exemple, si un terme recherché apparaît fréquemment dans une référence ou est l’un d’un très petit nombre de termes utilisé dans cette référence, cette référence aura probablement un score plus élevé qu’une autre où le terme apparaît moins fréquemment ou qui contient un très grand nombre de mots. De même, le score sera plus élevé si un terme est rare dans l’ensemble de la bibliographie que s’il est très commun. De plus, si un terme de recherche apparaît par exemple dans le titre d’une référence, le score de cette référence sera plus élevé que s’il apparaissait dans un champ moins important tel le résumé.
  • Le tri par Pertinence n’est disponible qu’après avoir soumis des mots-clés par le biais de la section Rechercher.
  • Les catégories sélectionnées dans la section Explorer n’ont aucun effet sur le tri par pertinence. Elles ne font que filtrer la liste des résultats.
Dans les auteurs ou contributeurs
  • "Peng, Changhui"

Résultats 437 ressources

PertinenceDate décroissanteDate croissanteAuteur A-ZAuteur Z-ATitre A-ZTitre Z-A
  • 1
  • 2
  • 3
  • 4
  • 5
  • ...
  • 22
  • Page 3 de 22
Résumés
  • Epule, E. T., Peng, C., Lepage, L., & Chen, Z. (2014). The causes, effects and challenges of Sahelian droughts: a critical review. Regional Environmental Change, 14(1), 145–156. https://doi.org/10.1007/s10113-013-0473-z
    Consulter sur link.springer.com
  • Epule, E. T., Peng, C., Lepage, L., & Chen, Z. (2014). Policy options towards deforestation reduction in Cameroon: An analysis based on a systematic approach. Land Use Policy, 36, 405–415. https://doi.org/10.1016/j.landusepol.2013.09.004
    Consulter sur linkinghub.elsevier.com
  • Peng, C., Jiang, H., Apps, M. J., & Zhang, Y. (2002). Effects of harvesting regimes on carbon and nitrogen dynamics of boreal forests in central Canada: a process model simulation. Ecological Modelling, 155(2–3), 177–189. https://doi.org/10.1016/S0304-3800(02)00134-5
    Consulter sur linkinghub.elsevier.com
  • Peng, Y., Li, P., Zhou, X., Luo, Y., Zhang, C., Wang, L., Li, T., & Peng, C. (2024). Divergent contributions of spring and autumn photosynthetic phenology to seasonal carbon uptake of subtropical vegetation in China. Journal of Geographical Sciences, 34(7), 1280–1296. https://doi.org/10.1007/s11442-024-2248-5
    Consulter sur link.springer.com
  • Tian, D., Yan, W., Chen, X., Deng, X., Peng, Y., Kang, W., & Peng, C. (2008). Variation in runoff with age of Chinese fir plantations in Central South China. Hydrological Processes, 22(25), 4870–4876. https://doi.org/10.1002/hyp.7105

    Abstract To determine the influence of forest structures on runoff characteristics, the hydrological effects of Chinese fir plantations were studied by analysing runoff patterns at different growth and development stages (stand age classes I to V) from 1984 to 2004 at the Huitong Ecosystem Research Station, Central South University of Forestry and Technology, Hunan Province, Central South China. Results for two small experimental Chinese fir watersheds showed different peak values for surface runoff amount and coefficients at different ages, with lowest values in age classes I and V and highest values in age classes II and III. However, both underground and total runoff coefficients decreased with increasing age class. Total runoff coefficient was about twice as high in age class I (30·8%) as that in age class V (15·8%). Higher underground and total runoff coefficients were found in young forests. This was mainly attributed to soil disturbance due to human management practices such as site ploughing. Results indicate that Chinese fir plantations play a significant role in regulating water distribution in the watershed. Useful information is provided on the effects of forest management practices on hydrological processes in forest plantations. Copyright © 2008 John Wiley & Sons, Ltd.

    Consulter sur onlinelibrary.wiley.com
  • Sun, M., Li, P., Ren, P., Tang, J., Zhang, C., Zhou, X., & Peng, C. (2023). Divergent response of vegetation phenology to extreme temperatures and precipitation of different intensities on the Tibetan Plateau. Science China Earth Sciences, 66(10), 2200–2210. https://doi.org/10.1007/s11430-022-1156-1
    Consulter sur link.springer.com
  • Yue, K., Peng, C., Yang, W., Peng, Y., Zhang, C., Huang, C., & Wu, F. (2016). Degradation of lignin and cellulose during foliar litter decomposition in an alpine forest river. Ecosphere, 7(10), e01523. https://doi.org/10.1002/ecs2.1523

    Abstract Lignin and cellulose are thought to be critical factors that affect the rate of litter decomposition; however, few data are available on their degradation dynamics during litter decomposition in lotic ecosystems, such as forest rivers, where litter can decompose much more rapidly than in terrestrial ecosystems. We studied the degradation of lignin and cellulose in the foliar litter of four dominant riparian species (willow: Salix paraplesia ; azalea: Rhododendron lapponicum ; cypress: Sabina saltuaria ; and larch: Larix mastersiana ) in an alpine forest river. Over an entire year's incubation, litter lignin and cellulose degraded by 14.7–100% and 57.7–100% of their initial masses, respectively, depending on litter species. Strong degradations of lignin and cellulose occurred in the prefreezing period (i.e., the first 41 d) during litter decomposition, and the degradation rate was the highest among all the decomposition periods regardless of litter species. Litter species, decomposition period, and environmental factors such as temperature and nutrient availability showed significant influences on lignin and cellulose degradation rates. Compared with previously reported data regarding the dynamics of lignin and cellulose during litter decomposition in terrestrial ecosystems, our results suggest that lignin and cellulose can be degraded much more rapidly in lotic ecosystems, indicating that the traditionally used two‐phased model for the dynamics of lignin in decomposing litter may not be suitable in lotic ecosystems.

    Consulter sur esajournals.onlinelibrary.wiley.com
  • Ren, P., Li, P., Tang, J., Li, T., Liu, Z., Zhou, X., & Peng, C. (2023). Satellite monitoring reveals short-term cumulative and time-lag effect of drought and heat on autumn photosynthetic phenology in subtropical vegetation. Environmental Research, 239, 117364. https://doi.org/10.1016/j.envres.2023.117364
    Consulter sur linkinghub.elsevier.com
  • Wang, M., Li, P., Peng, C., Xiao, J., Zhou, X., Luo, Y., & Zhang, C. (2022). Divergent responses of autumn vegetation phenology to climate extremes over northern middle and high latitudes. Global Ecology and Biogeography, 31(11), 2281–2296. https://doi.org/10.1111/geb.13583

    Abstract Aim Compared with gradual climate change, extreme climatic events have more direct and dramatic impacts on vegetation growth. However, the influence of climate extremes on important phenological periods, such as the end of the growing season (EOS), remains unclear. Here, we investigate the temporal trends of EOS across different biomes and quantify the response of EOS to multiple climate extreme indices (CEIs). Location Northern middle and high latitudes. Time period 2000–2020. Major taxa studied Plants. Methods Three phenology extraction methods were used to compute EOS from satellite, FLUXNET and Pan European Phenology Project PEP725 phenological datasets. Different stress states of cold, hot, dry and wet extremes were represented by 12 CEIs. Partial correlation and ridge regression analysis were used to quantify the response of EOS to climate extremes across latitudinal and biome scales. Results Our study showed a delayed EOS in boreal biomes, but a significantly advanced EOS in temperate biomes. The advanced EOS induced by cold stress was observed for c . 80% of the vegetated pixels. The warm‐related CEIs delayed the EOS in high latitudes, and the delayed effect weakened or even reversed with decreasing latitude. In contrast, EOS exhibited opposite response patterns to dry days and wet‐related CEIs. Overall, EOS exhibited higher sensitivity to extreme temperature in boreal biomes than in temperate biomes. Specifically, continuous drought and high heat stress induced an earlier EOS in some temperate forest biomes, whereas moderate heat stress delayed the EOS in most study biomes. In contrast, EOS was not sensitive to extreme drought in water‐restricted biomes. Main conclusions EOS exhibited divergent responses to various climate extremes with different intensities and frequencies. Moreover, the response of EOS to extreme climate stress was dependent on the biome and latitude. These findings emphasize the importance of incorporating the divergent extreme climate effects into vegetation phenological models and Earth system models.

    Consulter sur onlinelibrary.wiley.com
  • Yang, M., Zhou, X., Liu, Z., Li, P., Tang, J., Xie, B., & Peng, C. (2022). A Review of General Methods for Quantifying and Estimating Urban Trees and Biomass. Forests, 13(4), 616. https://doi.org/10.3390/f13040616

    Understanding the biomass, characteristics, and carbon sequestration of urban forests is crucial for maintaining and improving the quality of life and ensuring sustainable urban planning. Approaches to urban forest management have been incorporated into interdisciplinary, multifunctional, and technical efforts. In this review, we evaluate recent developments in urban forest research methods, compare the accuracy and efficiency of different methods, and identify emerging themes in urban forest assessment. This review focuses on urban forest biomass estimation and individual tree feature detection, showing that the rapid development of remote sensing technology and applications in recent years has greatly benefited the study of forest dynamics. Included in the review are light detection and ranging-based techniques for estimating urban forest biomass, deep learning algorithms that can extract tree crowns and identify tree species, methods for measuring large canopies using unmanned aerial vehicles to estimate forest structure, and approaches for capturing street tree information using street view images. Conventional methods based on field measurements are highly beneficial for accurately recording species-specific characteristics. There is an urgent need to combine multi-scale and spatiotemporal methods to improve urban forest detection at different scales.

    Consulter sur www.mdpi.com
  • Chen, K., Yang, M., Zhou, X., Liu, Z., Li, P., Tang, J., & Peng, C. (2022). Recent advances in carbon footprint studies of urban ecosystems: overview, application, and future challenges. Environmental Reviews, 30(2), 342–356. https://doi.org/10.1139/er-2021-0111

    Urban ecosystems are complex systems with anthropogenic features that generate considerable CO 2 emissions, which contributes to global climate change. Quantitative estimates of the carbon footprint of urban ecosystems are crucial for developing low-carbon development policies to mitigate climate change. Herein, we reviewed more than 195 urban carbon footprint and carbon footprint related studies, collated the recent progress in carbon footprint calculation methods and research applications of the urban ecosystem carbon footprint, analyzed the research applications of the carbon footprint of different cities, and focused on the need to study the urban ecosystem carbon footprint from a holistic perspective. Specifically, we aimed to: (i) compare the strengths and weaknesses of five existing carbon footprint calculation methods [life cycle assessment, input–output analysis, hybrid life cycle assessment, carbon footprint calculator, and Intergovernmental Panel on Climate Change (IPCC)]; (ii) analyze the status of current research on the carbon footprint of different urban subregions based on different features; and (iii) highlight new methods and areas of research on the carbon footprint of future urban ecosystems. Not all carbon footprint accounting methods are applicable to the carbon footprint determination of urban ecosystems; although the IPCC method is more widely used than the others, the hybrid life cycle assessment method is more accurate. With the emergence of new science and technology, quantitative methods to calculate the carbon footprint of urban ecosystems have evolved, becoming more accurate. Further development of new technologies, such as big data and artificial intelligence, to assess the carbon footprint of urban ecosystems is anticipated to help address the emerging challenges in urban ecosystem research effectively to achieve carbon neutrality and urban sustainability under global change.

    Consulter sur cdnsciencepub.com
  • Li, P., Sun, M., Liu, Y., Ren, P., Peng, C., Zhou, X., & Tang, J. (2021). Response of Vegetation Photosynthetic Phenology to Urbanization in Dongting Lake Basin, China. Remote Sensing, 13(18), 3722. https://doi.org/10.3390/rs13183722

    Urbanization can induce environmental changes such as the urban heat island effect, which in turn influence the terrestrial ecosystem. However, the effect of urbanization on the phenology of subtropical vegetation remains relatively unexplored. This study analyzed the changing trend of vegetation photosynthetic phenology in Dongting Lake basin, China, and its response to urbanization using nighttime light and chlorophyll fluorescence datasets. Our results indicated the start of the growing season (SOS) of vegetation in the study area was significantly advanced by 0.70 days per year, whereas the end of the growing season (EOS) was delayed by 0.24 days per year during 2000–2017. We found that urbanization promoted the SOS advance and EOS delay. With increasing urbanization intensity, the sensitivity of SOS to urbanization firstly increased then decreased, while the sensitivity of EOS to urbanization decreased with urbanization intensity. The climate sensitivity of vegetation phenology varied with urbanization intensity; urbanization induced an earlier SOS by increasing preseason minimum temperatures and a later EOS by increasing preseason precipitation. These findings improve our understanding of the vegetation phenology response to urbanization in subtropical regions and highlight the need to integrate human activities into future vegetation phenology models.

    Consulter sur www.mdpi.com
  • Liu, Y., He, T., Wang, Y., Peng, C., Du, H., Yuan, S., & Li, P. (2021). Analysis and Prediction of Expansion of Central Cities Based on Nighttime Light Data in Hunan Province, China. Sustainability, 13(21), 11982. https://doi.org/10.3390/su132111982

    Quantifying the characteristics of urban expansion as well as influencing factors is essential for the simulation and prediction of urban expansion. In this study, we extracted the built-up regions of 14 central cities in the Hunan province using the DMSP-OLS night light remote sensing datasets from 1992 to 2018, and evaluated the spatial and temporal characteristics of the built-up regions in terms of the area, expansion speed, and main expansion direction. The backpropagation (BP) neural network and autoregressive integrated moving average (ARIMA) model were used to predict the area of the built-up regions from 2019 to 2026. The model predictions were based on the GDP, ratio of the secondary industry output to the GDP, ratio of the tertiary industry output to the GDP, year-end urban population, and urban road area. The results demonstrated that the built-up area and expansion speed of the central cities in the eastern part of the Hunan province were significantly higher than those in the western part. The main expansion directions of the 14 central cities were east and south. The urban road area, year-end urban population, and GDP were the main driving factors of the expansion. The urban expansion model based on the BP neural network provided a high prediction accuracy (R = 0.966). It was estimated that the total area of urban built-up regions in the Hunan province will reach 2463.80 km2 by 2026. These findings provide a new perspective for predicting urban areas rapidly and simply, and it also provides a useful reference for studying the spatial expansion characteristics of central cities and formulating a sustainable urban development strategy during the 14th Five-Year Plan of China.

    Consulter sur www.mdpi.com
  • Guo, Y., Peng, C., Zhu, Q., Wang, M., Wang, H., Peng, S., & He, H. (2019). Modelling the impacts of climate and land use changes on soil water erosion: Model applications, limitations and future challenges. Journal of Environmental Management, 250, 109403. https://doi.org/10.1016/j.jenvman.2019.109403
    Consulter sur linkinghub.elsevier.com
  • Yue, K., Fornara, D. A., Yang, W., Peng, Y., Li, Z., Wu, F., & Peng, C. (2017). Effects of three global change drivers on terrestrial C:N:P stoichiometry: a global synthesis. Global Change Biology, 23(6), 2450–2463. https://doi.org/10.1111/gcb.13569

    Abstract Over the last few decades, there has been an increasing number of controlled‐manipulative experiments to investigate how plants and soils might respond to global change. These experiments typically examined the effects of each of three global change drivers [i.e., nitrogen (N) deposition, warming, and elevated CO 2 ] on primary productivity and on the biogeochemistry of carbon (C), N, and phosphorus (P) across different terrestrial ecosystems. Here, we capitalize on this large amount of information by performing a comprehensive meta‐analysis (>2000 case studies worldwide) to address how C:N:P stoichiometry of plants, soils, and soil microbial biomass might respond to individual vs. combined effects of the three global change drivers. Our results show that (i) individual effects of N addition and elevated CO 2 on C:N:P stoichiometry are stronger than warming, (ii) combined effects of pairs of global change drivers (e.g., N addition + elevated CO 2 , warming + elevated CO 2 ) on C:N:P stoichiometry were generally weaker than the individual effects of each of these drivers, (iii) additive interactions (i.e., when combined effects are equal to or not significantly different from the sum of individual effects) were more common than synergistic or antagonistic interactions, (iv) C:N:P stoichiometry of soil and soil microbial biomass shows high homeostasis under global change manipulations, and (v) C:N:P responses to global change are strongly affected by ecosystem type, local climate, and experimental conditions. Our study is one of the first to compare individual vs. combined effects of the three global change drivers on terrestrial C:N:P ratios using a large set of data. To further improve our understanding of how ecosystems might respond to future global change, long‐term ecosystem‐scale studies testing multifactor effects on plants and soils are urgently required across different world regions.

    Consulter sur onlinelibrary.wiley.com
  • Quillet, A., Frolking, S., Garneau, M., Talbot, J., & Peng, C. (2013). Assessing the role of parameter interactions in the sensitivity analysis of a model of peatland dynamics. Ecological Modelling, 248, 30–40. https://doi.org/10.1016/j.ecolmodel.2012.08.023
    Consulter sur linkinghub.elsevier.com
  • Chen, H., Wu, N., Wang, Y., Gao, Y., & Peng, C. (2011). Methane Fluxes from Alpine Wetlands of Zoige Plateau in Relation to Water Regime and Vegetation under Two Scales. Water, Air, & Soil Pollution, 217(1–4), 173–183. https://doi.org/10.1007/s11270-010-0577-8
    Consulter sur link.springer.com
  • Epule, T. E., Peng, C., Mirielle Wase, M., & Mafany, N. M. (2011). Well Water Quality and Public Health Implications: the Case of Four Neighbourhoods of the City of Douala Cameroon. Global Journal of Health Science, 3(2), p75. https://doi.org/10.5539/gjhs.v3n2p75
    Consulter sur www.ccsenet.org
  • Peng, C., Guiot, J., Wu, H., Jiang, H., & Luo, Y. (2011). Integrating models with data in ecology and palaeoecology: advances towards a model-data fusion approach: Model-data fusion in ecology. Ecology Letters, 14(5), 522–536. https://doi.org/10.1111/j.1461-0248.2011.01603.x
    Consulter sur onlinelibrary.wiley.com
  • Peng, C., Guiot, J., Wu, H., Jiang, H., & Luo, Y. (2011). Integrating models with data in ecology and palaeoecology: advances towards a model-data fusion approach: Model-data fusion in ecology. Ecology Letters, 14(5), 522–536. https://doi.org/10.1111/j.1461-0248.2011.01603.x
    Consulter sur onlinelibrary.wiley.com
  • 1
  • 2
  • 3
  • 4
  • 5
  • ...
  • 22
  • Page 3 de 22
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Flux web personnalisé
Dernière mise à jour depuis la base de données : 24/05/2025 05:00 (UTC)

Explorer

Auteur·e·s

  • Blanchet, Jean-Pierre (1)
  • Peng, Changhui (426)

Type de ressource

  • Article de colloque (1)
  • Article de revue (435)
  • Livre (1)

Année de publication

  • Entre 1900 et 1999 (6)
    • Entre 1990 et 1999 (6)
      • 1997 (1)
      • 1998 (2)
      • 1999 (3)
  • Entre 2000 et 2025 (431)
    • Entre 2000 et 2009 (51)
      • 2000 (3)
      • 2001 (3)
      • 2002 (7)
      • 2003 (3)
      • 2004 (2)
      • 2005 (3)
      • 2006 (5)
      • 2007 (7)
      • 2008 (8)
      • 2009 (10)
    • Entre 2010 et 2019 (218)
      • 2010 (6)
      • 2011 (26)
      • 2012 (14)
      • 2013 (22)
      • 2014 (27)
      • 2015 (13)
      • 2016 (23)
      • 2017 (18)
      • 2018 (27)
      • 2019 (42)
    • Entre 2020 et 2025 (162)
      • 2020 (31)
      • 2021 (42)
      • 2022 (34)
      • 2023 (35)
      • 2024 (20)

Explorer

UQAM - Université du Québec à Montréal

  • Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • bibliotheques@uqam.ca

Accessibilité Web