Votre recherche
Résultats 409 ressources
-
Many hypotheses have been proposed to explain elevational species richness patterns; however, evaluating their importance remains a challenge, as mountains that are nested within different biogeographic regions have different environmental attributes. Here, we conducted a comparative study for trees, shrubs, herbs, and ferns along the same elevational gradient for 22 mountains worldwide, examining the performance of hypotheses of energy, tolerance, climatic variability, and spatial area to explain the elevational species richness patterns for each plant group. Results show that for trees and shrubs, energy-related factors exhibit greater explanatory power than other factors, whereas the factors that are associated with climatic variability performed better in explaining the elevational species richness patterns of herbs and ferns. For colder mountains, energy-related factors emerged as the main drivers of woody species diversity, whereas in hotter and wetter ecosystems, temperature and precipitation were the most important predictors of species richness along elevational gradients. For herbs and ferns, the variation in species richness was less than that of woody species. These findings provide important evidence concerning the generality of the energy theory for explaining the elevational species richness pattern of plants, highlighting that the underlying mechanisms may change among different growth form groups and regions within which mountains are nested.
-
Abstract Natural vegetation restoration can enhance soil organic carbon (SOC) sequestration, but the mechanisms and control factors underlying SOC sequestration are still unknown. The objectives of the study are to quantify the temporal variation of soil and aggregate‐associated organic carbon (OC) and identify factors controlling the variation following natural vegetation restoration after farmland abandonment. We collected soils from sites having 5, 30, 60, 100, and 160 years of a natural vegetation restoration chronosequence after farmland abandonment in the Loess Plateau, China. The results showed that natural vegetation restoration increased macroaggregates (0.25–2 mm; 46.6% to 73.9%), SOC (2.27 to 9.81 g kg −1 ), and aggregate OC (7.33 to 36.98 g kg −1 ) in the top 20‐cm soil compared with abandoned farmland, and the increases mainly occurred in the early stage (<60 years). The increase of SOC was contributed by OC accumulated in macroaggregates (0.25–2 mm) rather than microaggregates (≤0.25 mm). Moreover, SOC sequestration in the topsoil (0–10 cm) was mainly determined by fine root biomass (FR), labile organic carbon (LOC), and microbial biomass carbon (MBC). And in the subsoil (10–20 cm), SOC sequestration was mainly determined by the proportion of macroaggregates. The results suggest that natural vegetation restoration increased SOC and aggregate OC, and FR, MBC, LOC, and the physical protection of aggregates played important roles in regulating SOC and aggregate OC.
-
Abstract To determine the influence of forest structures on runoff characteristics, the hydrological effects of Chinese fir plantations were studied by analysing runoff patterns at different growth and development stages (stand age classes I to V) from 1984 to 2004 at the Huitong Ecosystem Research Station, Central South University of Forestry and Technology, Hunan Province, Central South China. Results for two small experimental Chinese fir watersheds showed different peak values for surface runoff amount and coefficients at different ages, with lowest values in age classes I and V and highest values in age classes II and III. However, both underground and total runoff coefficients decreased with increasing age class. Total runoff coefficient was about twice as high in age class I (30·8%) as that in age class V (15·8%). Higher underground and total runoff coefficients were found in young forests. This was mainly attributed to soil disturbance due to human management practices such as site ploughing. Results indicate that Chinese fir plantations play a significant role in regulating water distribution in the watershed. Useful information is provided on the effects of forest management practices on hydrological processes in forest plantations. Copyright © 2008 John Wiley & Sons, Ltd.
-
Abstract Lignin and cellulose are thought to be critical factors that affect the rate of litter decomposition; however, few data are available on their degradation dynamics during litter decomposition in lotic ecosystems, such as forest rivers, where litter can decompose much more rapidly than in terrestrial ecosystems. We studied the degradation of lignin and cellulose in the foliar litter of four dominant riparian species (willow: Salix paraplesia ; azalea: Rhododendron lapponicum ; cypress: Sabina saltuaria ; and larch: Larix mastersiana ) in an alpine forest river. Over an entire year's incubation, litter lignin and cellulose degraded by 14.7–100% and 57.7–100% of their initial masses, respectively, depending on litter species. Strong degradations of lignin and cellulose occurred in the prefreezing period (i.e., the first 41 d) during litter decomposition, and the degradation rate was the highest among all the decomposition periods regardless of litter species. Litter species, decomposition period, and environmental factors such as temperature and nutrient availability showed significant influences on lignin and cellulose degradation rates. Compared with previously reported data regarding the dynamics of lignin and cellulose during litter decomposition in terrestrial ecosystems, our results suggest that lignin and cellulose can be degraded much more rapidly in lotic ecosystems, indicating that the traditionally used two‐phased model for the dynamics of lignin in decomposing litter may not be suitable in lotic ecosystems.
-
Abstract Aim Compared with gradual climate change, extreme climatic events have more direct and dramatic impacts on vegetation growth. However, the influence of climate extremes on important phenological periods, such as the end of the growing season (EOS), remains unclear. Here, we investigate the temporal trends of EOS across different biomes and quantify the response of EOS to multiple climate extreme indices (CEIs). Location Northern middle and high latitudes. Time period 2000–2020. Major taxa studied Plants. Methods Three phenology extraction methods were used to compute EOS from satellite, FLUXNET and Pan European Phenology Project PEP725 phenological datasets. Different stress states of cold, hot, dry and wet extremes were represented by 12 CEIs. Partial correlation and ridge regression analysis were used to quantify the response of EOS to climate extremes across latitudinal and biome scales. Results Our study showed a delayed EOS in boreal biomes, but a significantly advanced EOS in temperate biomes. The advanced EOS induced by cold stress was observed for c . 80% of the vegetated pixels. The warm‐related CEIs delayed the EOS in high latitudes, and the delayed effect weakened or even reversed with decreasing latitude. In contrast, EOS exhibited opposite response patterns to dry days and wet‐related CEIs. Overall, EOS exhibited higher sensitivity to extreme temperature in boreal biomes than in temperate biomes. Specifically, continuous drought and high heat stress induced an earlier EOS in some temperate forest biomes, whereas moderate heat stress delayed the EOS in most study biomes. In contrast, EOS was not sensitive to extreme drought in water‐restricted biomes. Main conclusions EOS exhibited divergent responses to various climate extremes with different intensities and frequencies. Moreover, the response of EOS to extreme climate stress was dependent on the biome and latitude. These findings emphasize the importance of incorporating the divergent extreme climate effects into vegetation phenological models and Earth system models.
-
Understanding the biomass, characteristics, and carbon sequestration of urban forests is crucial for maintaining and improving the quality of life and ensuring sustainable urban planning. Approaches to urban forest management have been incorporated into interdisciplinary, multifunctional, and technical efforts. In this review, we evaluate recent developments in urban forest research methods, compare the accuracy and efficiency of different methods, and identify emerging themes in urban forest assessment. This review focuses on urban forest biomass estimation and individual tree feature detection, showing that the rapid development of remote sensing technology and applications in recent years has greatly benefited the study of forest dynamics. Included in the review are light detection and ranging-based techniques for estimating urban forest biomass, deep learning algorithms that can extract tree crowns and identify tree species, methods for measuring large canopies using unmanned aerial vehicles to estimate forest structure, and approaches for capturing street tree information using street view images. Conventional methods based on field measurements are highly beneficial for accurately recording species-specific characteristics. There is an urgent need to combine multi-scale and spatiotemporal methods to improve urban forest detection at different scales.
-
Urban ecosystems are complex systems with anthropogenic features that generate considerable CO 2 emissions, which contributes to global climate change. Quantitative estimates of the carbon footprint of urban ecosystems are crucial for developing low-carbon development policies to mitigate climate change. Herein, we reviewed more than 195 urban carbon footprint and carbon footprint related studies, collated the recent progress in carbon footprint calculation methods and research applications of the urban ecosystem carbon footprint, analyzed the research applications of the carbon footprint of different cities, and focused on the need to study the urban ecosystem carbon footprint from a holistic perspective. Specifically, we aimed to: (i) compare the strengths and weaknesses of five existing carbon footprint calculation methods [life cycle assessment, input–output analysis, hybrid life cycle assessment, carbon footprint calculator, and Intergovernmental Panel on Climate Change (IPCC)]; (ii) analyze the status of current research on the carbon footprint of different urban subregions based on different features; and (iii) highlight new methods and areas of research on the carbon footprint of future urban ecosystems. Not all carbon footprint accounting methods are applicable to the carbon footprint determination of urban ecosystems; although the IPCC method is more widely used than the others, the hybrid life cycle assessment method is more accurate. With the emergence of new science and technology, quantitative methods to calculate the carbon footprint of urban ecosystems have evolved, becoming more accurate. Further development of new technologies, such as big data and artificial intelligence, to assess the carbon footprint of urban ecosystems is anticipated to help address the emerging challenges in urban ecosystem research effectively to achieve carbon neutrality and urban sustainability under global change.
-
Urbanization can induce environmental changes such as the urban heat island effect, which in turn influence the terrestrial ecosystem. However, the effect of urbanization on the phenology of subtropical vegetation remains relatively unexplored. This study analyzed the changing trend of vegetation photosynthetic phenology in Dongting Lake basin, China, and its response to urbanization using nighttime light and chlorophyll fluorescence datasets. Our results indicated the start of the growing season (SOS) of vegetation in the study area was significantly advanced by 0.70 days per year, whereas the end of the growing season (EOS) was delayed by 0.24 days per year during 2000–2017. We found that urbanization promoted the SOS advance and EOS delay. With increasing urbanization intensity, the sensitivity of SOS to urbanization firstly increased then decreased, while the sensitivity of EOS to urbanization decreased with urbanization intensity. The climate sensitivity of vegetation phenology varied with urbanization intensity; urbanization induced an earlier SOS by increasing preseason minimum temperatures and a later EOS by increasing preseason precipitation. These findings improve our understanding of the vegetation phenology response to urbanization in subtropical regions and highlight the need to integrate human activities into future vegetation phenology models.