Votre recherche
Résultats 425 ressources
-
Abstract A significant increase in reactive nitrogen (N) added to terrestrial ecosystems through agricultural fertilization or atmospheric deposition is considered to be one of the most widespread drivers of global change. Modifying biomass allocation is one primary strategy for maximizing plant growth rate, survival, and adaptability to various biotic and abiotic stresses. However, there is much uncertainty as to whether and how plant biomass allocation strategies change in response to increased N inputs in terrestrial ecosystems. Here, we synthesized 3516 paired observations of plant biomass and their components related to N additions across terrestrial ecosystems worldwide. Our meta‐analysis reveals that N addition (ranging from 1.08 to 113.81 g m −2 year −1 ) increased terrestrial plant biomass by 55.6% on average. N addition has increased plant stem mass fraction, shoot mass fraction, and leaf mass fraction by 13.8%, 12.9%, and 13.4%, respectively, but with an associated decrease in plant reproductive mass (including flower and fruit biomass) fraction by 3.4%. We further documented a reduction in plant root‐shoot ratio and root mass fraction by 27% (21.8%–32.1%) and 14.7% (11.6%–17.8%), respectively, in response to N addition. Meta‐regression results showed that N addition effects on plant biomass were positively correlated with mean annual temperature, soil available phosphorus, soil total potassium, specific leaf area, and leaf area per plant. Nevertheless, they were negatively correlated with soil total N, leaf carbon/N ratio, leaf carbon and N content per leaf area, as well as the amount and duration of N addition. In summary, our meta‐analysis suggests that N addition may alter terrestrial plant biomass allocation strategies, leading to more biomass being allocated to aboveground organs than belowground organs and growth versus reproductive trade‐offs. At the global scale, leaf functional traits may dictate how plant species change their biomass allocation pattern in response to N addition.
-
Abstract. Leaf area index (LAI) is an important parameter related to carbon, water, and energy exchange between canopy and atmosphere and is widely applied in process models that simulate production and hydrological cycles in forest ecosystems. However, fine-scale spatial heterogeneity of LAI and its controlling factors have yet to be fully understood in Chinese subtropical forests. We used hemispherical photography to measure LAI values in three subtropical forests (Pinus massoniana–Lithocarpus glaber coniferous and evergreen broadleaved mixed forests, Choerospondias axillaris deciduous broadleaved forests, and L. glaber–Cyclobalanopsis glauca evergreen broadleaved forests) from April 2014 to January 2015. Spatial heterogeneity of LAI and its controlling factors were analysed using geostatistical methods and the generalised additive models (GAMs) respectively. Our results showed that LAI values differed greatly in the three forests and their seasonal variations were consistent with plant phenology. LAI values exhibited strong spatial autocorrelation for the three forests measured in January and for the L. glaber–C. glauca forest in April, July, and October. Obvious patch distribution pattern of LAI values occurred in three forests during the non-growing period and this pattern gradually dwindled in the growing season. Stem number, crown coverage, proportion of evergreen conifer species on basal area basis, proportion of deciduous species on basal area basis, and forest types affected the spatial variations in LAI values in January, while stem number and proportion of deciduous species on basal area basis affected the spatial variations in LAI values in July. Floristic composition, spatial heterogeneity, and seasonal variations should be considered for sampling strategy in indirect LAI measurement and application of LAI to simulate functional processes in subtropical forests.
-
Plants interact to the seasonality of their environments, and changes in plant phenology have long been regarded as sensitive indicators of climatic change. Plant phenology modeling has been shown to be the simplest and most useful tool to assess phenol–climate shifts. Temperature, solar radiation, and water availability are assumed to be the key factors that control plant phenology. Statistical, mechanistic, and theoretical approaches have often been used for the parameterization of plant phenology models. The statistical approaches correlate the timing of phenological events to environmental factors or heat unit accumulations. The approaches have the simplified calculation procedures, correct phenological mechanism assumptions, but limited applications and predictive abilities. The mechanistic approaches describe plant phenology with the known or assumed “cause–effect relationships” between biological processes and key driving variables. The mechanistic approaches have the improved parameter processes, realistic assumptions, broad applications, and effective predictions. The theoretical approaches assume cost–benefit tradeoff strategies in trees. These methods are capable of capturing and quantifying the potential impacts and consequences of global climate change and human activity. However, certain limitations still exist related to our understanding of phenological mechanisms in relation to (1) interactions between plants and their specific climates, (2) the integration of both field observational and remote sensing data with plant phenology models across taxa and ecosystem type, (3) amplitude clarification of scale-related sensitivity to global climate change, and (4) improvements in parameterization processes and the overall reduction of modeling uncertainties to forecast impacts of future climate change on plant phenological dynamics. To improve our capacity in the prediction of the amplitude of plant phenological responses with regard to both structural and functional sensitivity to future global climate change, it is important to refine modeling methodologies by applying long-term and large-scale observational data. It is equally important to consider other less used but critical factors (such as heredity, pests, and anthropogenic drivers), apply advanced model parameterization and data assimilation techniques, incorporate process-based plant phenology models as a dynamic component into global vegetation dynamic models, and test plant phenology models against long-term ground observations and high-resolution satellite data across different spatial and temporal scales.
-
Soil enzymes play a central role in carbon and nutrient cycling, and their activities can be affected by drought-induced oxygen exposure. However, a systematic global estimate of enzyme sensitivity to drought in wetlands is still lacking. Through a meta-analysis of 55 studies comprising 761 paired observations, this study found that phosphorus-related enzyme activity increased by 38% as result of drought in wetlands, while the majority of other soil enzyme activities remained stable. The expansion of vascular plants under long-term drought significantly promoted the accumulation of phenolic compounds. Using a 2-week incubation experiment with phenol supplementation, we found that phosphorus-related enzyme could tolerate higher biotoxicity of phenolic compounds than other enzymes. Moreover, a long-term (35 years) drainage experiment in a northern peatland in China confirmed that the increased phenolic concentration in surface layer resulting from a shift in vegetation composition inhibited the increase in enzyme activities caused by rising oxygen availability, except for phosphorus-related enzyme. Overall, these results demonstrate the complex and resilient nature of wetland ecosystems, with soil enzymes showing a high degree of adaptation to drought conditions. These new insights could help evaluate the impact of drought on future wetland ecosystem services and provide a theoretical foundation for the remediation of degraded wetlands.
-
In recent years, plastic greenhouse vegetable cultivation (PGVC) has expanded worldwide, particularly in China, where it accounts for more than 90% of all global PGVC operations. As compared with conventional agricultural methods, PGVC has doubled crop yields by extending growing seasons and intensifying agriculture. PGVC also offers more ecosystem services relative to conventional approaches, including greater soil carbon sequestration, lower water consumption, and improved soil protection at regional scales. The economic benefits of this easily implemented agricultural method are attractive to small‐holder farmers. However, greater environmental impacts (eg greenhouse‐gas emissions, generation of large amounts of plastic waste) are associated with PGVC than with conventional approaches. Here, we review what is currently known about PGVC and identify future research priorities that will comprehensively assess the ecosystem services offered by this method of cultivation, as well as its environmental impacts and socioeconomic benefits.