Accéder au contenu Accéder au menu principal Accéder à la recherche
Accéder au contenu Accéder au menu principal
UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
UQAM logo
Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • Bibliographie
  • Accueil
  1. Vitrine des bibliographies
  2. Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  3. Résultats
  • Accueil

Votre recherche

Réinitialiser la recherche

Aide

L’interface de recherche est composée de trois sections : Rechercher, Explorer et Résultats. Celles-ci sont décrites en détail ci-dessous.

Vous pouvez lancer une recherche aussi bien à partir de la section Rechercher qu’à partir de la section Explorer.

Rechercher

Cette section affiche vos critères de recherche courants et vous permet de soumettre des mots-clés à chercher dans la bibliographie.

  • Chaque nouvelle soumission ajoute les mots-clés saisis à la liste des critères de recherche.
  • Pour lancer une nouvelle recherche plutôt qu’ajouter des mots-clés à la recherche courante, utilisez le bouton Réinitialiser la recherche, puis entrez vos mots-clés.
  • Pour remplacer un mot-clé déjà soumis, veuillez d’abord le retirer en décochant sa case à cocher, puis soumettre un nouveau mot-clé.
  • Vous pouvez contrôler la portée de votre recherche en choisissant où chercher. Les options sont :
    • Partout : repère vos mots-clés dans tous les champs des références bibliographiques ainsi que dans le contenu textuel des documents disponibles.
    • Dans les auteurs ou contributeurs : repère vos mots-clés dans les noms d’auteurs ou de contributeurs.
    • Dans les titres : repère vos mots-clés dans les titres.
    • Dans tous les champs : repère vos mots-clés dans tous les champs des notices bibliographiques.
    • Dans les documents : repère vos mots-clés dans le contenu textuel des documents disponibles.
  • Vous pouvez utiliser les opérateurs booléens avec vos mots-clés :
    • ET : repère les références qui contiennent tous les termes fournis. Ceci est la relation par défaut entre les termes séparés d’un espace. Par exemple, a b est équivalent à a ET b.
    • OU : repère les références qui contiennent n’importe lequel des termes fournis. Par exemple, a OU b.
    • SAUF : exclut les références qui contiennent le terme fourni. Par exemple, SAUF a.
    • Les opérateurs booléens doivent être saisis en MAJUSCULES.
  • Vous pouvez faire des groupements logiques (avec les parenthèses) pour éviter les ambiguïtés lors de la combinaison de plusieurs opérateurs booléens. Par exemple, (a OU b) ET c.
  • Vous pouvez demander une séquence exacte de mots (avec les guillemets droits), par exemple "a b c". Par défaut la différence entre les positions des mots est de 1, ce qui signifie qu’une référence sera repérée si elle contient les mots et qu’ils sont consécutifs. Une distance maximale différente peut être fournie (avec le tilde), par exemple "a b"~2 permet jusqu’à un terme entre a et b, ce qui signifie que la séquence a c b pourrait être repérée aussi bien que a b.
  • Vous pouvez préciser que certains termes sont plus importants que d’autres (avec l’accent circonflexe). Par exemple, a^2 b c^0.5 indique que a est deux fois plus important que b dans le calcul de pertinence des résultats, tandis que c est de moitié moins important. Ce type de facteur peut être appliqué à un groupement logique, par exemple (a b)^3 c.
  • La recherche par mots-clés est insensible à la casse et les accents et la ponctuation sont ignorés.
  • Les terminaisons des mots sont amputées pour la plupart des champs, tels le titre, le résumé et les notes. L’amputation des terminaisons vous évite d’avoir à prévoir toutes les formes possibles d’un mot dans vos recherches. Ainsi, les termes municipal, municipale et municipaux, par exemple, donneront tous le même résultat. L’amputation des terminaisons n’est pas appliquée au texte des champs de noms, tels auteurs/contributeurs, éditeur, publication.

Explorer

Cette section vous permet d’explorer les catégories associées aux références.

  • Les catégories peuvent servir à affiner votre recherche. Cochez une catégorie pour l’ajouter à vos critères de recherche. Les résultats seront alors restreints aux références qui sont associées à cette catégorie.
  • Dé-cochez une catégorie pour la retirer de vos critères de recherche et élargir votre recherche.
  • Les nombres affichés à côté des catégories indiquent combien de références sont associées à chaque catégorie considérant les résultats de recherche courants. Ces nombres varieront en fonction de vos critères de recherche, de manière à toujours décrire le jeu de résultats courant. De même, des catégories et des facettes entières pourront disparaître lorsque les résultats de recherche ne contiennent aucune référence leur étant associées.
  • Une icône de flèche () apparaissant à côté d’une catégorie indique que des sous-catégories sont disponibles. Vous pouvez appuyer sur l’icône pour faire afficher la liste de ces catégories plus spécifiques. Par la suite, vous pouvez appuyer à nouveau pour masquer la liste. L’action d’afficher ou de masquer les sous-catégories ne modifie pas vos critères de recherche; ceci vous permet de rapidement explorer l’arborescence des catégories, si désiré.

Résultats

Cette section présente les résultats de recherche. Si aucun critère de recherche n’a été fourni, elle montre toute la bibliographie (jusqu’à 20 références par page).

  • Chaque référence de la liste des résultats est un hyperlien vers sa notice bibliographique complète. À partir de la notice, vous pouvez continuer à explorer les résultats de recherche en naviguant vers les notices précédentes ou suivantes de vos résultats de recherche, ou encore retourner à la liste des résultats.
  • Des hyperliens supplémentaires, tels que Consulter le document ou Consulter sur [nom d’un site web], peuvent apparaître sous un résultat de recherche. Ces liens vous fournissent un accès rapide à la ressource, des liens que vous trouverez également dans la notice bibliographique.
  • Le bouton Résumés vous permet d’activer ou de désactiver l’affichage des résumés dans la liste des résultats de recherche. Toutefois, activer l’affichage des résumés n’aura aucun effet sur les résultats pour lesquels aucun résumé n’est disponible.
  • Diverses options sont fournies pour permettre de contrôler l’ordonnancement les résultats de recherche. L’une d’elles est l’option de tri par Pertinence, qui classe les résultats du plus pertinent au moins pertinent. Le score utilisé à cette fin prend en compte la fréquence des mots ainsi que les champs dans lesquels ils apparaissent. Par exemple, si un terme recherché apparaît fréquemment dans une référence ou est l’un d’un très petit nombre de termes utilisé dans cette référence, cette référence aura probablement un score plus élevé qu’une autre où le terme apparaît moins fréquemment ou qui contient un très grand nombre de mots. De même, le score sera plus élevé si un terme est rare dans l’ensemble de la bibliographie que s’il est très commun. De plus, si un terme de recherche apparaît par exemple dans le titre d’une référence, le score de cette référence sera plus élevé que s’il apparaissait dans un champ moins important tel le résumé.
  • Le tri par Pertinence n’est disponible qu’après avoir soumis des mots-clés par le biais de la section Rechercher.
  • Les catégories sélectionnées dans la section Explorer n’ont aucun effet sur le tri par pertinence. Elles ne font que filtrer la liste des résultats.
Dans les auteurs ou contributeurs
  • "Peng, Changhui"

Résultats 437 ressources

PertinenceDate décroissanteDate croissanteAuteur A-ZAuteur Z-ATitre A-ZTitre Z-A
  • 1
  • ...
  • 11
  • 12
  • 13
  • 14
  • 15
  • ...
  • 22
  • Page 13 de 22
Résumés
  • Yu, G., Chen, Z., Piao, S., Peng, C., Ciais, P., Wang, Q., Li, X., & Zhu, X. (2014). High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proceedings of the National Academy of Sciences, 111(13), 4910–4915. https://doi.org/10.1073/pnas.1317065111

    Significance Understanding the location of carbon sources and sinks is essential for accurately predicting future changes in atmospheric carbon dioxide and climate. Mid- to high-latitude terrestrial ecosystems are well known to be the principal carbon sink regions, yet less attention has been paid to the mid- to low-latitude ecosystems. In this study, long-term eddy covariance observations demonstrate that there is a high carbon dioxide uptake (net ecosystem productivity) by the mid- to low-latitude East Asian monsoon subtropical forests that were shaped by the uplift of the Tibetan Plateau. Increasing nitrogen deposition, a young forest age structure, and sufficient water and heat availability combined to contribute to this large carbon dioxide uptake. , Temperate- and high-latitude forests have been shown to contribute a carbon sink in the Northern Hemisphere, but fewer studies have addressed the carbon balance of the subtropical forests. In the present study, we integrated eddy covariance observations established in the 1990s and 2000s to show that East Asian monsoon subtropical forests between 20°N and 40°N represent an average net ecosystem productivity (NEP) of 362 ± 39 g C m −2 yr −1 (mean ± 1 SE). This average forest NEP value is higher than that of Asian tropical and temperate forests and is also higher than that of forests at the same latitudes in Europe–Africa and North America. East Asian monsoon subtropical forests have comparable NEP to that of subtropical forests of the southeastern United States and intensively managed Western European forests. The total NEP of East Asian monsoon subtropical forests was estimated to be 0.72 ± 0.08 Pg C yr −1 , which accounts for 8% of the global forest NEP. This result indicates that the role of subtropical forests in the current global carbon cycle cannot be ignored and that the regional distributions of the Northern Hemisphere's terrestrial carbon sinks are needed to be reevaluated. The young stand ages and high nitrogen deposition, coupled with sufficient and synchronous water and heat availability, may be the primary reasons for the high NEP of this region, and further studies are needed to quantify the contribution of each underlying factor.

    Consulter sur pnas.org
  • Wen, X., Zhao, Z., Deng, X., Xiang, W., Tian, D., Yan, W., Zhou, X., & Peng, C. (2014). Applying an artificial neural network to simulate and predict Chinese fir (Cunninghamia lanceolata) plantation carbon flux in subtropical China. Ecological Modelling, 294, 19–26. https://doi.org/10.1016/j.ecolmodel.2014.09.006
    Consulter sur linkinghub.elsevier.com
  • Zhang, Y., Peng, C., Li, W., Fang, X., Zhang, T., Zhu, Q., Chen, H., & Zhao, P. (2013). Monitoring and estimating drought-induced impacts on forest structure, growth, function, and ecosystem services using remote-sensing data: recent progress and future challenges. Environmental Reviews, 21(2), 103–115. https://doi.org/10.1139/er-2013-0006

    Alongside global warming, droughts are expected to increase in frequency, severity, and extent in the near future, which will likely result in significant impacts on forest growth, production, structure, composition, and ecosystem services. However, due to spatial and temporal characteristics, it is difficult to monitor and assess the potential effects of droughts. Remote sensing can provide an effective way to obtain real-time conditions of forests affected by drought and offer a range of spatial and temporal insights into drought-induced changes to forest ecosystem structure, function, and services. Remote sensing is rapidly developing as more satellites are launched. In situ and remotely sensed data fusion techniques have achieved notable success in assessing drought-induced damage to forests and carbon cycles. Even so, constraints still exist when using satellite data. The objectives of this review are to (1) briefly review existing data sources and methods of remote sensing; (2) synthesize current applications and contributions of remote sensing in monitoring and estimating impacts of droughts on forest ecosystems; and (3) highlight research gaps and future challenges.

    Consulter sur www.nrcresearchpress.com
  • Li, Q., Ma, Q., Gao, J., Zhang, J., Li, Y., Shi, M., Peng, C., & Song, X. (2022). Stumps increased soil respiration in a subtropical Moso bamboo (Phyllostachys edulis) plantation under nitrogen addition. Agricultural and Forest Meteorology, 323, 109047. https://doi.org/10.1016/j.agrformet.2022.109047
    Consulter sur linkinghub.elsevier.com
  • Yu, Y., Duan, C., Li, S., Peng, C., Yang, J., Yan, K., Bi, X., & Zou, P. (2022). Relationship between environmental pollution and economic development in late-developing regions shows an inverted V. Science of The Total Environment, 838, 156295. https://doi.org/10.1016/j.scitotenv.2022.156295
    Consulter sur linkinghub.elsevier.com
  • Li, Q., Cui, K., Lv, J., Zhang, J., Peng, C., Li, Y., Gu, Z., & Song, X. (2022). Biochar amendments increase soil organic carbon storage and decrease global warming potentials of soil CH4 and N2O under N addition in a subtropical Moso bamboo plantation. Forest Ecosystems, 9, 100054. https://doi.org/10.1016/j.fecs.2022.100054
    Consulter sur linkinghub.elsevier.com
  • Zong, M., Lin, C., Li, S., Li, H., Duan, C., Peng, C., Guo, Y., & An, R. (2021). Tillage activates iron to prevent soil organic carbon loss following forest conversion to cornfields in tropical acidic red soils. Science of The Total Environment, 761, 143253. https://doi.org/10.1016/j.scitotenv.2020.143253
    Consulter sur linkinghub.elsevier.com
  • Zhang, J., Li, Q., Lv, J., Peng, C., Gu, Z., Qi, L., Song, X., & Song, X. (2021). Management scheme influence and nitrogen addition effects on soil CO2, CH4, and N2O fluxes in a Moso bamboo plantation. Forest Ecosystems, 8(1), 6. https://doi.org/10.1186/s40663-021-00285-0

    Abstract Background It is still not clear whether the effects of N deposition on soil greenhouse gas (GHG) emissions are influenced by plantation management schemes. A field experiment was conducted to investigate the effects of conventional management (CM) versus intensive management (IM), in combination with simulated N deposition levels of control (ambient N deposition), 30 kg N·ha − 1 ·year − 1 (N30, ambient + 30 kg N·ha − 1 ·year − 1 ), 60 kg N·ha − 1 ·year − 1 (N60, ambient + 60 kg N·ha − 1 ·year − 1 ), or 90 kg N·ha − 1 ·year − 1 (N90, ambient + 90 kg N·ha − 1 ·year − 1 ) on soil CO 2 , CH 4 , and N 2 O fluxes. For this, 24 plots were set up in a Moso bamboo ( Phyllostachys edulis ) plantation from January 2013 to December 2015. Gas samples were collected monthly from January 2015 to December 2015. Results Compared with CM, IM significantly increased soil CO 2 emissions and their temperature sensitivity ( Q 10 ) but had no significant effects on soil CH 4 uptake or N 2 O emissions. In the CM plots, N30 and N60 significantly increased soil CO 2 emissions, while N60 and N90 significantly increased soil N 2 O emissions. In the IM plots, N30 and N60 significantly increased soil CO 2 and N 2 O emissions, while N60 and N90 significantly decreased soil CH 4 uptake. Overall, in both CM and IM plots, N30 and N60 significantly increased global warming potentials, whereas N90 did not significantly affect global warming potential. However, N addition significantly decreased the Q 10 value of soil CO 2 emissions under IM but not under CM. Soil microbial biomass carbon was significantly and positively correlated with soil CO 2 and N 2 O emissions but significantly and negatively correlated with soil CH 4 uptake. Conclusion Our results indicate that management scheme effects should be considered when assessing the effect of atmospheric N deposition on GHG emissions in bamboo plantations.

    Consulter sur forestecosyst.springeropen.com
  • Hu, X., He, Y., Kong, Z., Zhang, J., Yuan, M., Yu, L., Peng, C., & Zhu, Q. (2021). Evaluation of Future Impacts of Climate Change, CO2, and Land Use Cover Change on Global Net Primary Productivity Using a Processed Model. Land, 10(4), 365. https://doi.org/10.3390/land10040365

    Few studies have focused on the combined impact of climate change, CO2, and land-use cover change (LUCC), especially the evaluation of the impact of LUCC on net primary productivity (NPP) in the future. In this study, we simulated the overall NPP change trend from 2010 to 2100 and its response to climatic factors, CO2 concentration, and LUCC conditions under three typical emission scenarios (Representative Concentration Pathway RCP2.6, RCP4.5, and RCP8.5). (1) Under the predicted global pattern, NPP showed an increasing trend, with the most prominent variation at the end of the century. The increasing trend is mainly caused by the positive effect of CO2 on NPP. However, the increasing trend of LUCC has only a small positive effect. (2) Under the RCP 8.5 scenario, from 2090 to 2100, CO2 has the most significant positive impact on tropical areas, reaching 8.328 Pg C Yr−1. Under the same conditions, climate change has the greatest positive impact on the northern high latitudes (1.175 Pg C Yr−1), but it has the greatest negative impact on tropical areas, reaching −4.842 Pg C Yr−1. (3) The average contribution rate of LUCC to NPP was 6.14%. Under the RCP8.5 scenario, LUCC made the largest positive contribution on NPP (0.542 Pg C Yr−1) globally from 2010 to 2020.

    Consulter sur www.mdpi.com
  • Wang, H., Li, H., Liu, Z., Lv, J., Song, X., Li, Q., Jiang, H., & Peng, C. (2021). Observed Methane Uptake and Emissions at the Ecosystem Scale and Environmental Controls in a Subtropical Forest. Land, 10(9), 975. https://doi.org/10.3390/land10090975

    Methane (CH4) is one of the three most important greenhouse gases. To date, observations of ecosystem-scale methane (CH4) fluxes in forests are currently lacking in the global CH4 budget. The environmental factors controlling CH4 flux dynamics remain poorly understood at the ecosystem scale. In this study, we used a state-of-the-art eddy covariance technique to continuously measure the CH4 flux from 2016 to 2018 in a subtropical forest of Zhejiang Province in China, quantify the annual CH4 budget and investigate its control factors. We found that the total annual CH4 budget was 1.15 ± 0.28~4.79 ± 0.49 g CH4 m−2 year−1 for 2017–2018. The daily CH4 flux reached an emission peak of 0.145 g m−2 d−1 during winter and an uptake peak of −0.142 g m−2 d−1 in summer. During the whole study period, the studied forest region acted as a CH4 source (78.65%) during winter and a sink (21.35%) in summer. Soil temperature had a negative relationship (p < 0.01; R2 = 0.344) with CH4 flux but had a positive relationship with soil moisture (p < 0.01; R2 = 0.348). Our results showed that soil temperature and moisture were the most important factors controlling the ecosystem-scale CH4 flux dynamics of subtropical forests in the Tianmu Mountain Nature Reserve in Zhejiang Province, China. Subtropical forest ecosystems in China acted as a net source of methane emissions from 2016 to 2018, providing positive feedback to global climate warming.

    Consulter sur www.mdpi.com
  • Yang, Y., Gou, R., Li, W., Kassout, J., Wu, J., Wang, L., Peng, C., & Lin, G. (2021). Leaf Trait Covariation and Its Controls: A Quantitative Data Analysis Along a Subtropical Elevation Gradient. Journal of Geophysical Research: Biogeosciences, 126(7), e2021JG006378. https://doi.org/10.1029/2021JG006378

    Abstract Elevation gradients are frequently treated as useful space‐for‐time substitutions for inferring trait variations in response to different environmental conditions. The independent variations in leaf traits in response to elevation are well understood, but far less is known about trait covariation and its controls. This limits our understanding of the principles and mechanisms of leaf trait covariation, especially along elevation gradients in subtropical forests. Here, we studied the covariation among seven functional traits, including leaf size (LS), leaf nitrogen per unit mass ( N mass ), leaf nitrogen per unit area ( N area ), leaf mass per area (LMA), leaf dry matter content (LDMC), leaf thickness (LT) and the leaf internal‐to‐ambient CO 2 ratio ( C i : C a , termed χ ). Sampling was conducted on 41 species in a subtropical forest on Mount Huangshan, China, and the data were analyzed using multivariate analysis and variance partitioning procedures. We found that (a) The first three principal components captured 79% of the total leaf trait covariation, which was caused mainly by within site differences; (b) N mass and LDMC were positively correlated with soil water content (SW) and negatively correlated with vapor pressure deficit (VPD), while χ showed negative relationships with elevation; and (c) 78% of the variation in the studied plant functional traits could be explained by climate, soil, and family controls in combination, while family distribution was the most important determining factor for trait covariation along the elevation gradient. Our findings provide relevant insights into plant adaptation to environmental gradients and present useful guidelines for ecosystem management and planning. , Plain Language Summary Changes of plant functional traits along elevation gradient are important indicators which reflect the behaviors and adaptations of plants. In this study we first analyzed the dominant signals of seven leaf functional traits and then we depicted the response of seven traits to changing elevation environments, and finally we quantified the contributions of climate, soil, and vegetation distribution. Our findings validate the hypothesis that trait covariation, and thus adaptation, occurs in response to the elevation gradients that most plant species experience. , Key Points The first three principal components captured 79% of the total leaf trait covariation Leaf nitrogen content ( N mass ) and leaf dry mass content (LDMC) were positively correlated with soil water content and negatively correlated with vapor pressure deficit Vegetation (family) distribution was the most important determining factor for trait covariation along the elevation gradient

    Consulter sur agupubs.onlinelibrary.wiley.com
  • He, M., Bräuning, A., Rossi, S., Gebrekirstos, A., Grießinger, J., Mayr, C., Peng, C., & Yang, B. (2021). No evidence for carryover effect in tree rings based on a pulse-labelling experiment on Juniperus communis in South Germany. Trees, 35(2), 493–502. https://doi.org/10.1007/s00468-020-02051-1
    Consulter sur link.springer.com
  • Song, X., Peng, C., Ciais, P., Li, Q., Xiang, W., Xiao, W., Zhou, G., & Deng, L. (2020). Nitrogen addition increased CO2 uptake more than non-CO2 greenhouse gases emissions in a Moso bamboo forest. Science Advances, 6(12), eaaw5790. https://doi.org/10.1126/sciadv.aaw5790

    Moso bamboo forests have greater net carbon uptake benefits with increasing nitrogen deposition in the coming decades. , Atmospheric nitrogen (N) deposition affects the greenhouse gas (GHG) balance of ecosystems through the net atmospheric CO 2 exchange and the emission of non-CO 2 GHGs (CH 4 and N 2 O). We quantified the effects of N deposition on biomass increment, soil organic carbon (SOC), and N 2 O and CH 4 fluxes and, ultimately, the net GHG budget at ecosystem level of a Moso bamboo forest in China. Nitrogen addition significantly increased woody biomass increment and SOC decomposition, increased N 2 O emission, and reduced soil CH 4 uptake. Despite higher N 2 O and CH 4 fluxes, the ecosystem remained a net GHG sink of 26.8 to 29.4 megagrams of CO 2 equivalent hectare −1 year −1 after 4 years of N addition against 22.7 hectare −1 year −1 without N addition. The total net carbon benefits induced by atmospheric N deposition at current rates of 30 kilograms of N hectare −1 year −1 over Moso bamboo forests across China were estimated to be of 23.8 teragrams of CO 2 equivalent year −1 .

    Consulter sur www.science.org
  • Zhang, J., Peng, C., Xue, W., Yang, B., Yang, Z., Niu, S., Zhu, Q., & Wang, M. (2020). Dynamics of soil water extractable organic carbon and inorganic nitrogen and their environmental controls in mountain forest and meadow ecosystems in China. CATENA, 187, 104338. https://doi.org/10.1016/j.catena.2019.104338
    Consulter sur linkinghub.elsevier.com
  • Wang, J., Zhu, Q., Yang, Y., Zhang, X., Zhang, J., Yuan, M., Chen, H., & Peng, C. (2020). High uncertainties detected in the wetlands distribution of the Qinghai–Tibet Plateau based on multisource data. Landscape and Ecological Engineering, 16(1), 47–61. https://doi.org/10.1007/s11355-019-00402-w
    Consulter sur link.springer.com
  • Feng, H., Guo, J., Han, M., Wang, W., Peng, C., Jin, J., Song, X., & Yu, S. (2020). A review of the mechanisms and controlling factors of methane dynamics in forest ecosystems. Forest Ecology and Management, 455, 117702. https://doi.org/10.1016/j.foreco.2019.117702
    Consulter sur linkinghub.elsevier.com
  • Yang, Y., Zhu, Q., Liu, J., Li, M., Yuan, M., Chen, H., Peng, C., & Yang, Z. (2020). Estimating soil organic carbon redistribution in three major river basins of China based on erosion processes. Soil Research, 58(6), 540. https://doi.org/10.1071/SR19325

    Soil erosion by water affects soil organic carbon (SOC) migration and distribution, which are important processes for defining ecosystem carbon sources and sinks. Little has been done to quantify soil carbon erosion in the three major basins in China, the Yangtze River, Yellow River and Pearl River Basins, which contain the most eroded areas. This research attempts to quantify the lateral movement of SOC based on spatial and temporal patterns of water erosion rates derived from an empirical Unit Stream Power Erosion Deposition Model (USPED) model. The water erosion rates simulated by the USPED model agreed reasonably with observations (R2 = 0.43, P &lt; 0.01). We showed that regional water erosion ranged within 23.3–50 Mg ha–1 year–1 during 1992–2013, inducing the lateral redistribution of SOC caused by erosion in the range of 0.027–0.049 Mg C ha–1 year–1, and that caused by deposition of 0.0079–0.015 Mg C ha–1 year–1, in the three basins. The total eroded SOC was 0.006, 0.002 and 0.001 Pg year–1 in the Yangtze River, Yellow River and Pearl River Basins respectively. The net eroded SOC in the three basins was ~0.0075 Pg C year–1. Overall, the annual average redistributed SOC rate caused by erosion was greater than that caused by deposition, and the SOC loss in the Yangtze River Basin was greatest among the three basins. Our study suggests that considering both processes of erosion and deposition – as well as effects of topography, rainfall, land use types and their interactions – on these processes are important to understand SOC redistribution caused by water erosion.

    Consulter sur www.publish.csiro.au
  • Zhao, J., Feng, X., Deng, L., Yang, Y., Zhao, Z., Zhao, P., Peng, C., & Fu, B. (2020). Quantifying the Effects of Vegetation Restorations on the Soil Erosion Export and Nutrient Loss on the Loess Plateau. Frontiers in Plant Science, 11, 573126. https://doi.org/10.3389/fpls.2020.573126

    The transport of eroded soil to rivers changes the nutrient cycles of river ecosystems and has significant impacts on the regional eco-environment and human health. The Loess Plateau, a leading vegetation restoration region in China and the world, has experienced severe soil erosion and nutrient loss, however, the extent to which vegetation restoration prevents soil erosion export (to rivers) and it caused nutrient loss is unknown. To evaluate the effects of the first stage of the Grain for Green Project (GFGP) on the Loess Plateau (started in 1999 and ended in 2013), we analyzed the vegetation change trends and quantified the effects of GFGP on soil erosion export (to rivers) and it caused nutrient loss by considering soil erosion processes. The results were as follows: (1) in the first half of study period (from 1982 to 1998), the vegetation cover changed little, but after the implementation of the first stage of the GFGP (from 1999 to 2013), the vegetation cover of 75.0% of the study area showed a significant increase; (2) The proportion of eroded areas decreased from 41.8 to 26.7% as a result of the GFGP, and the erosion intensity lessened in most regions; the implementation significantly reduce the soil nutrient loss; (3) at the county level, soil erosion export could be avoided significantly by the increasing of vegetation greenness in the study area ( R = −0.49). These results illustrate the relationships among changes in vegetation cover, soil erosion and nutrient export, which could provide a reference for local government for making ecology-relative policies.

    Consulter sur www.frontiersin.org
  • Deng, L., Peng, C., Huang, C., Wang, K., Liu, Q., Liu, Y., Hai, X., & Shangguan, Z. (2019). Drivers of soil microbial metabolic limitation changes along a vegetation restoration gradient on the Loess Plateau, China. Geoderma, 353, 188–200. https://doi.org/10.1016/j.geoderma.2019.06.037
    Consulter sur linkinghub.elsevier.com
  • Yang, Y., Wang, H., Harrison, S. P., Prentice, I. C., Wright, I. J., Peng, C., & Lin, G. (2019). Quantifying leaf‐trait covariation and its controls across climates and biomes. New Phytologist, 221(1), 155–168. https://doi.org/10.1111/nph.15422

    Summary Plant functional ecology requires the quantification of trait variation and its controls. Field measurements on 483 species at 48 sites across China were used to analyse variation in leaf traits, and assess their predictability. Principal components analysis ( PCA ) was used to characterize trait variation, redundancy analysis ( RDA ) to reveal climate effects, and RDA with variance partitioning to estimate separate and overlapping effects of site, climate, life‐form and family membership. Four orthogonal dimensions of total trait variation were identified: leaf area ( LA ), internal‐to‐ambient CO 2 ratio (χ), leaf economics spectrum traits (specific leaf area ( SLA ) versus leaf dry matter content ( LDMC ) and nitrogen per area ( N area )), and photosynthetic capacities ( V cmax , J max at 25°C). LA and χ covaried with moisture index. Site, climate, life form and family together explained 70% of trait variance. Families accounted for 17%, and climate and families together 29%. LDMC and SLA showed the largest family effects. Independent life‐form effects were small. Climate influences trait variation in part by selection for different life forms and families. Trait values derived from climate data via RDA showed substantial predictive power for trait values in the available global data sets. Systematic trait data collection across all climates and biomes is still necessary.

    Consulter sur nph.onlinelibrary.wiley.com
  • 1
  • ...
  • 11
  • 12
  • 13
  • 14
  • 15
  • ...
  • 22
  • Page 13 de 22
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Flux web personnalisé
Dernière mise à jour depuis la base de données : 29/05/2025 05:00 (UTC)

Explorer

Auteur·e·s

  • Blanchet, Jean-Pierre (1)
  • Peng, Changhui (426)

Type de ressource

  • Article de colloque (1)
  • Article de revue (435)
  • Livre (1)

Année de publication

  • Entre 1900 et 1999 (6)
    • Entre 1990 et 1999 (6)
      • 1997 (1)
      • 1998 (2)
      • 1999 (3)
  • Entre 2000 et 2025 (431)
    • Entre 2000 et 2009 (51)
      • 2000 (3)
      • 2001 (3)
      • 2002 (7)
      • 2003 (3)
      • 2004 (2)
      • 2005 (3)
      • 2006 (5)
      • 2007 (7)
      • 2008 (8)
      • 2009 (10)
    • Entre 2010 et 2019 (218)
      • 2010 (6)
      • 2011 (26)
      • 2012 (14)
      • 2013 (22)
      • 2014 (27)
      • 2015 (13)
      • 2016 (23)
      • 2017 (18)
      • 2018 (27)
      • 2019 (42)
    • Entre 2020 et 2025 (162)
      • 2020 (31)
      • 2021 (42)
      • 2022 (34)
      • 2023 (35)
      • 2024 (20)

Explorer

UQAM - Université du Québec à Montréal

  • Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • bibliotheques@uqam.ca

Accessibilité Web