Accéder au contenu Accéder au menu principal Accéder à la recherche
Accéder au contenu Accéder au menu principal
UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
UQAM logo
Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • Bibliographie
  • Accueil
  1. Vitrine des bibliographies
  2. Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  3. Résultats
  • Accueil

Votre recherche

Réinitialiser la recherche

Aide

L’interface de recherche est composée de trois sections : Rechercher, Explorer et Résultats. Celles-ci sont décrites en détail ci-dessous.

Vous pouvez lancer une recherche aussi bien à partir de la section Rechercher qu’à partir de la section Explorer.

Rechercher

Cette section affiche vos critères de recherche courants et vous permet de soumettre des mots-clés à chercher dans la bibliographie.

  • Chaque nouvelle soumission ajoute les mots-clés saisis à la liste des critères de recherche.
  • Pour lancer une nouvelle recherche plutôt qu’ajouter des mots-clés à la recherche courante, utilisez le bouton Réinitialiser la recherche, puis entrez vos mots-clés.
  • Pour remplacer un mot-clé déjà soumis, veuillez d’abord le retirer en décochant sa case à cocher, puis soumettre un nouveau mot-clé.
  • Vous pouvez contrôler la portée de votre recherche en choisissant où chercher. Les options sont :
    • Partout : repère vos mots-clés dans tous les champs des références bibliographiques ainsi que dans le contenu textuel des documents disponibles.
    • Dans les auteurs ou contributeurs : repère vos mots-clés dans les noms d’auteurs ou de contributeurs.
    • Dans les titres : repère vos mots-clés dans les titres.
    • Dans tous les champs : repère vos mots-clés dans tous les champs des notices bibliographiques.
    • Dans les documents : repère vos mots-clés dans le contenu textuel des documents disponibles.
  • Vous pouvez utiliser les opérateurs booléens avec vos mots-clés :
    • ET : repère les références qui contiennent tous les termes fournis. Ceci est la relation par défaut entre les termes séparés d’un espace. Par exemple, a b est équivalent à a ET b.
    • OU : repère les références qui contiennent n’importe lequel des termes fournis. Par exemple, a OU b.
    • SAUF : exclut les références qui contiennent le terme fourni. Par exemple, SAUF a.
    • Les opérateurs booléens doivent être saisis en MAJUSCULES.
  • Vous pouvez faire des groupements logiques (avec les parenthèses) pour éviter les ambiguïtés lors de la combinaison de plusieurs opérateurs booléens. Par exemple, (a OU b) ET c.
  • Vous pouvez demander une séquence exacte de mots (avec les guillemets droits), par exemple "a b c". Par défaut la différence entre les positions des mots est de 1, ce qui signifie qu’une référence sera repérée si elle contient les mots et qu’ils sont consécutifs. Une distance maximale différente peut être fournie (avec le tilde), par exemple "a b"~2 permet jusqu’à un terme entre a et b, ce qui signifie que la séquence a c b pourrait être repérée aussi bien que a b.
  • Vous pouvez préciser que certains termes sont plus importants que d’autres (avec l’accent circonflexe). Par exemple, a^2 b c^0.5 indique que a est deux fois plus important que b dans le calcul de pertinence des résultats, tandis que c est de moitié moins important. Ce type de facteur peut être appliqué à un groupement logique, par exemple (a b)^3 c.
  • La recherche par mots-clés est insensible à la casse et les accents et la ponctuation sont ignorés.
  • Les terminaisons des mots sont amputées pour la plupart des champs, tels le titre, le résumé et les notes. L’amputation des terminaisons vous évite d’avoir à prévoir toutes les formes possibles d’un mot dans vos recherches. Ainsi, les termes municipal, municipale et municipaux, par exemple, donneront tous le même résultat. L’amputation des terminaisons n’est pas appliquée au texte des champs de noms, tels auteurs/contributeurs, éditeur, publication.

Explorer

Cette section vous permet d’explorer les catégories associées aux références.

  • Les catégories peuvent servir à affiner votre recherche. Cochez une catégorie pour l’ajouter à vos critères de recherche. Les résultats seront alors restreints aux références qui sont associées à cette catégorie.
  • Dé-cochez une catégorie pour la retirer de vos critères de recherche et élargir votre recherche.
  • Les nombres affichés à côté des catégories indiquent combien de références sont associées à chaque catégorie considérant les résultats de recherche courants. Ces nombres varieront en fonction de vos critères de recherche, de manière à toujours décrire le jeu de résultats courant. De même, des catégories et des facettes entières pourront disparaître lorsque les résultats de recherche ne contiennent aucune référence leur étant associées.
  • Une icône de flèche () apparaissant à côté d’une catégorie indique que des sous-catégories sont disponibles. Vous pouvez appuyer sur l’icône pour faire afficher la liste de ces catégories plus spécifiques. Par la suite, vous pouvez appuyer à nouveau pour masquer la liste. L’action d’afficher ou de masquer les sous-catégories ne modifie pas vos critères de recherche; ceci vous permet de rapidement explorer l’arborescence des catégories, si désiré.

Résultats

Cette section présente les résultats de recherche. Si aucun critère de recherche n’a été fourni, elle montre toute la bibliographie (jusqu’à 20 références par page).

  • Chaque référence de la liste des résultats est un hyperlien vers sa notice bibliographique complète. À partir de la notice, vous pouvez continuer à explorer les résultats de recherche en naviguant vers les notices précédentes ou suivantes de vos résultats de recherche, ou encore retourner à la liste des résultats.
  • Des hyperliens supplémentaires, tels que Consulter le document ou Consulter sur [nom d’un site web], peuvent apparaître sous un résultat de recherche. Ces liens vous fournissent un accès rapide à la ressource, des liens que vous trouverez également dans la notice bibliographique.
  • Le bouton Résumés vous permet d’activer ou de désactiver l’affichage des résumés dans la liste des résultats de recherche. Toutefois, activer l’affichage des résumés n’aura aucun effet sur les résultats pour lesquels aucun résumé n’est disponible.
  • Diverses options sont fournies pour permettre de contrôler l’ordonnancement les résultats de recherche. L’une d’elles est l’option de tri par Pertinence, qui classe les résultats du plus pertinent au moins pertinent. Le score utilisé à cette fin prend en compte la fréquence des mots ainsi que les champs dans lesquels ils apparaissent. Par exemple, si un terme recherché apparaît fréquemment dans une référence ou est l’un d’un très petit nombre de termes utilisé dans cette référence, cette référence aura probablement un score plus élevé qu’une autre où le terme apparaît moins fréquemment ou qui contient un très grand nombre de mots. De même, le score sera plus élevé si un terme est rare dans l’ensemble de la bibliographie que s’il est très commun. De plus, si un terme de recherche apparaît par exemple dans le titre d’une référence, le score de cette référence sera plus élevé que s’il apparaissait dans un champ moins important tel le résumé.
  • Le tri par Pertinence n’est disponible qu’après avoir soumis des mots-clés par le biais de la section Rechercher.
  • Les catégories sélectionnées dans la section Explorer n’ont aucun effet sur le tri par pertinence. Elles ne font que filtrer la liste des résultats.
Dans les auteurs ou contributeurs
  • "Peng, Changhui"

Résultats 425 ressources

PertinenceDate décroissanteDate croissanteAuteur A-ZAuteur Z-ATitre A-ZTitre Z-A
  • 1
  • ...
  • 10
  • 11
  • 12
  • 13
  • 14
  • ...
  • 22
  • Page 12 de 22
Résumés
  • Li, J., Deng, L., Peñuelas, J., Wu, J., Shangguan, Z., Sardans, J., Peng, C., & Kuzyakov, Y. (2023). C:N:P stoichiometry of plants, soils, and microorganisms: Response to altered precipitation. Global Change Biology, 29(24), 7051–7071. https://doi.org/10.1111/gcb.16959

    Abstract Precipitation changes modify C, N, and P cycles, which regulate the functions and structure of terrestrial ecosystems. Although altered precipitation affects above‐ and belowground C:N:P stoichiometry, considerable uncertainties remain regarding plant–microbial nutrient allocation strategies under increased (IPPT) and decreased (DPPT) precipitation. We meta‐analyzed 827 observations from 235 field studies to investigate the effects of IPPT and DPPT on the C:N:P stoichiometry of plants, soils, and microorganisms. DPPT reduced leaf C:N ratio, but increased the leaf and root N:P ratios reflecting stronger decrease of P compared with N mobility in soil under drought. IPPT increased microbial biomass C (+13%), N (+15%), P (26%), and the C:N ratio, whereas DPPT decreased microbial biomass N (−12%) and the N:P ratio. The C:N and N:P ratios of plant leaves were more sensitive to medium DPPT than to IPPT because drought increased plant N content, particularly in humid areas. The responses of plant and soil C:N:P stoichiometry to altered precipitation did not fit the double asymmetry model with a positive asymmetry under IPPT and a negative asymmetry under extreme DPPT. Soil microorganisms were more sensitive to IPPT than to DPPT, but they were more sensitive to extreme DPPT than extreme IPPT, consistent with the double asymmetry model. Soil microorganisms maintained stoichiometric homeostasis, whereas N:P ratios of plants follow that of the soils under altered precipitation. In conclusion, specific N allocation strategies of plants and microbial communities as well as N and P availability in soil critically mediate C:N:P stoichiometry by altered precipitation that need to be considered by prediction of ecosystem functions and C cycling under future climate change scenarios.

    Consulter sur onlinelibrary.wiley.com
  • Yu, H., Yang, L., Wang, Z., Guo, L., Peng, C., Yao, Q., Mo, Z., & Tan, T. (2023). Divergent response of leaf unfolding to climate warming in subtropical and temperate zones. Agricultural and Forest Meteorology, 342, 109742. https://doi.org/10.1016/j.agrformet.2023.109742
    Consulter sur linkinghub.elsevier.com
  • Li, M., Peng, C., Wang, M., Xue, W., Zhang, K., Wang, K., Shi, G., & Zhu, Q. (2017). The carbon flux of global rivers: A re-evaluation of amount and spatial patterns. Ecological Indicators, 80, 40–51. https://doi.org/10.1016/j.ecolind.2017.04.049
    Consulter sur linkinghub.elsevier.com
  • Lu, X., Jiang, H., Liu, J., Zhang, X., Jin, J., Zhu, Q., Zhang, Z., & Peng, C. (2016). Simulated effects of nitrogen saturation on the global carbon budget using the IBIS model. Scientific Reports, 6(1), 39173. https://doi.org/10.1038/srep39173

    Abstract Over the past 100 years, human activity has greatly changed the rate of atmospheric N (nitrogen) deposition in terrestrial ecosystems, resulting in N saturation in some regions of the world. The contribution of N saturation to the global carbon budget remains uncertain due to the complicated nature of C-N (carbon-nitrogen) interactions and diverse geography. Although N deposition is included in most terrestrial ecosystem models, the effect of N saturation is frequently overlooked. In this study, the IBIS (Integrated BIosphere Simulator) was used to simulate the global-scale effects of N saturation during the period 1961–2009. The results of this model indicate that N saturation reduced global NPP (Net Primary Productivity) and NEP (Net Ecosystem Productivity) by 0.26 and 0.03 Pg C yr −1 , respectively. The negative effects of N saturation on carbon sequestration occurred primarily in temperate forests and grasslands. In response to elevated CO 2 levels, global N turnover slowed due to increased biomass growth, resulting in a decline in soil mineral N. These changes in N cycling reduced the impact of N saturation on the global carbon budget. However, elevated N deposition in certain regions may further alter N saturation and C-N coupling.

    Consulter sur www.nature.com
  • Shi, S., Peng, C., Wang, M., Zhu, Q., Yang, G., Yang, Y., Xi, T., & Zhang, T. (2016). A global meta-analysis of changes in soil carbon, nitrogen, phosphorus and sulfur, and stoichiometric shifts after forestation. Plant and Soil, 407(1–2), 323–340. https://doi.org/10.1007/s11104-016-2889-y
    Consulter sur link.springer.com
  • Zhu, Q., Peng, C., Chen, H., Fang, X., Liu, J., Jiang, H., Yang, Y., & Yang, G. (2015). Estimating global natural wetland methane emissions using process modelling: spatio‐temporal patterns and contributions to atmospheric methane fluctuations. Global Ecology and Biogeography, 24(8), 959–972. https://doi.org/10.1111/geb.12307

    Abstract Aim The fluctuations of atmospheric methane ( CH 4 ) that have occurred in recent decades are not fully understood, particularly with regard to the contribution from wetlands. The application of spatially explicit parameters has been suggested as an effective method for reducing uncertainties in bottom‐up approaches to wetland CH 4 emissions, but has not been included in recent studies. Our goal was to estimate spatio‐temporal patterns of global wetland CH 4 emissions using a process model and then to identify the contribution of wetland emissions to atmospheric CH 4 fluctuations. Location Global. Methods A process‐based model integrated with full descriptions of methanogenesis ( TRIPLEX‐GHG ) was used to simulate global wetland CH 4 emissions. Results Global annual wetland CH 4 emissions ranged from 209 to 245  T g CH 4 year −1 between 1901 and 2012, with peaks occurring in 1991 and 2012. There is a decreasing trend between 1990 and 2010 with a rate of approximately 0.48  T g CH 4 year −1 , which was largely caused by emissions from tropical wetlands showing a decreasing trend of 0.44  T g CH 4 year −1 since the 1970s. Emissions from tropical, temperate and high‐latitude wetlands comprised 59, 26 and 15% of global emissions, respectively. Main conclusion Global wetland CH 4 emissions, the interannual variability of which was primary controlled by tropical wetlands, partially drive the atmospheric CH 4 burden. The stable to decreasing trend in wetland CH 4 emissions, a result of a balance of emissions from tropical and extratropical wetlands, was a particular factor in slowing the atmospheric CH 4 growth rate during the 1990s. The rapid decrease in tropical wetland CH 4 emissions that began in 2000 was supposed to offset the increase in anthropogenic emissions and resulted in a relatively stable level of atmospheric CH 4 from 2000 to 2006. Increasing wetland CH 4 emissions, particularly after 2010, should be an important contributor to the growth in atmospheric CH 4 seen since 2007.

    Consulter sur onlinelibrary.wiley.com
  • Zhang, Y., Li, W., Zhu, Q., Chen, H., Fang, X., Zhang, T., Zhao, P., & Peng, C. (2015). Monitoring the impact of aerosol contamination on the drought-induced decline of gross primary productivity. International Journal of Applied Earth Observation and Geoinformation, 36, 30–40. https://doi.org/10.1016/j.jag.2014.11.006
    Consulter sur linkinghub.elsevier.com
  • Fang, X., Zhu, Q., Chen, H., Ma, Z., Wang, W., Song, X., Zhao, P., & Peng, C. (2014). Analysis of vegetation dynamics and climatic variability impacts on greenness across Canada using remotely sensed data from 2000 to 2009. Journal of Applied Remote Sensing, 8(1), 083666. https://doi.org/10.1117/1.JRS.8.083666
    Consulter sur remotesensing.spiedigitallibrary.org
  • Song, X., Peng, C., Zhao, Z., Zhang, Z., Guo, B., Wang, W., Jiang, H., & Zhu, Q. (2014). Quantification of soil respiration in forest ecosystems across China. Atmospheric Environment, 94, 546–551. https://doi.org/10.1016/j.atmosenv.2014.05.071
    Consulter sur linkinghub.elsevier.com
  • Yu, G., Chen, Z., Piao, S., Peng, C., Ciais, P., Wang, Q., Li, X., & Zhu, X. (2014). High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proceedings of the National Academy of Sciences, 111(13), 4910–4915. https://doi.org/10.1073/pnas.1317065111

    Significance Understanding the location of carbon sources and sinks is essential for accurately predicting future changes in atmospheric carbon dioxide and climate. Mid- to high-latitude terrestrial ecosystems are well known to be the principal carbon sink regions, yet less attention has been paid to the mid- to low-latitude ecosystems. In this study, long-term eddy covariance observations demonstrate that there is a high carbon dioxide uptake (net ecosystem productivity) by the mid- to low-latitude East Asian monsoon subtropical forests that were shaped by the uplift of the Tibetan Plateau. Increasing nitrogen deposition, a young forest age structure, and sufficient water and heat availability combined to contribute to this large carbon dioxide uptake. , Temperate- and high-latitude forests have been shown to contribute a carbon sink in the Northern Hemisphere, but fewer studies have addressed the carbon balance of the subtropical forests. In the present study, we integrated eddy covariance observations established in the 1990s and 2000s to show that East Asian monsoon subtropical forests between 20°N and 40°N represent an average net ecosystem productivity (NEP) of 362 ± 39 g C m −2 yr −1 (mean ± 1 SE). This average forest NEP value is higher than that of Asian tropical and temperate forests and is also higher than that of forests at the same latitudes in Europe–Africa and North America. East Asian monsoon subtropical forests have comparable NEP to that of subtropical forests of the southeastern United States and intensively managed Western European forests. The total NEP of East Asian monsoon subtropical forests was estimated to be 0.72 ± 0.08 Pg C yr −1 , which accounts for 8% of the global forest NEP. This result indicates that the role of subtropical forests in the current global carbon cycle cannot be ignored and that the regional distributions of the Northern Hemisphere's terrestrial carbon sinks are needed to be reevaluated. The young stand ages and high nitrogen deposition, coupled with sufficient and synchronous water and heat availability, may be the primary reasons for the high NEP of this region, and further studies are needed to quantify the contribution of each underlying factor.

    Consulter sur pnas.org
  • Wen, X., Zhao, Z., Deng, X., Xiang, W., Tian, D., Yan, W., Zhou, X., & Peng, C. (2014). Applying an artificial neural network to simulate and predict Chinese fir (Cunninghamia lanceolata) plantation carbon flux in subtropical China. Ecological Modelling, 294, 19–26. https://doi.org/10.1016/j.ecolmodel.2014.09.006
    Consulter sur linkinghub.elsevier.com
  • Zhang, Y., Peng, C., Li, W., Fang, X., Zhang, T., Zhu, Q., Chen, H., & Zhao, P. (2013). Monitoring and estimating drought-induced impacts on forest structure, growth, function, and ecosystem services using remote-sensing data: recent progress and future challenges. Environmental Reviews, 21(2), 103–115. https://doi.org/10.1139/er-2013-0006

    Alongside global warming, droughts are expected to increase in frequency, severity, and extent in the near future, which will likely result in significant impacts on forest growth, production, structure, composition, and ecosystem services. However, due to spatial and temporal characteristics, it is difficult to monitor and assess the potential effects of droughts. Remote sensing can provide an effective way to obtain real-time conditions of forests affected by drought and offer a range of spatial and temporal insights into drought-induced changes to forest ecosystem structure, function, and services. Remote sensing is rapidly developing as more satellites are launched. In situ and remotely sensed data fusion techniques have achieved notable success in assessing drought-induced damage to forests and carbon cycles. Even so, constraints still exist when using satellite data. The objectives of this review are to (1) briefly review existing data sources and methods of remote sensing; (2) synthesize current applications and contributions of remote sensing in monitoring and estimating impacts of droughts on forest ecosystems; and (3) highlight research gaps and future challenges.

    Consulter sur www.nrcresearchpress.com
  • Li, Q., Ma, Q., Gao, J., Zhang, J., Li, Y., Shi, M., Peng, C., & Song, X. (2022). Stumps increased soil respiration in a subtropical Moso bamboo (Phyllostachys edulis) plantation under nitrogen addition. Agricultural and Forest Meteorology, 323, 109047. https://doi.org/10.1016/j.agrformet.2022.109047
    Consulter sur linkinghub.elsevier.com
  • Li, Q., Cui, K., Lv, J., Zhang, J., Peng, C., Li, Y., Gu, Z., & Song, X. (2022). Biochar amendments increase soil organic carbon storage and decrease global warming potentials of soil CH4 and N2O under N addition in a subtropical Moso bamboo plantation. Forest Ecosystems, 9, 100054. https://doi.org/10.1016/j.fecs.2022.100054
    Consulter sur linkinghub.elsevier.com
  • Zong, M., Lin, C., Li, S., Li, H., Duan, C., Peng, C., Guo, Y., & An, R. (2021). Tillage activates iron to prevent soil organic carbon loss following forest conversion to cornfields in tropical acidic red soils. Science of The Total Environment, 761, 143253. https://doi.org/10.1016/j.scitotenv.2020.143253
    Consulter sur linkinghub.elsevier.com
  • Zhang, J., Li, Q., Lv, J., Peng, C., Gu, Z., Qi, L., Song, X., & Song, X. (2021). Management scheme influence and nitrogen addition effects on soil CO2, CH4, and N2O fluxes in a Moso bamboo plantation. Forest Ecosystems, 8(1), 6. https://doi.org/10.1186/s40663-021-00285-0

    Abstract Background It is still not clear whether the effects of N deposition on soil greenhouse gas (GHG) emissions are influenced by plantation management schemes. A field experiment was conducted to investigate the effects of conventional management (CM) versus intensive management (IM), in combination with simulated N deposition levels of control (ambient N deposition), 30 kg N·ha − 1 ·year − 1 (N30, ambient + 30 kg N·ha − 1 ·year − 1 ), 60 kg N·ha − 1 ·year − 1 (N60, ambient + 60 kg N·ha − 1 ·year − 1 ), or 90 kg N·ha − 1 ·year − 1 (N90, ambient + 90 kg N·ha − 1 ·year − 1 ) on soil CO 2 , CH 4 , and N 2 O fluxes. For this, 24 plots were set up in a Moso bamboo ( Phyllostachys edulis ) plantation from January 2013 to December 2015. Gas samples were collected monthly from January 2015 to December 2015. Results Compared with CM, IM significantly increased soil CO 2 emissions and their temperature sensitivity ( Q 10 ) but had no significant effects on soil CH 4 uptake or N 2 O emissions. In the CM plots, N30 and N60 significantly increased soil CO 2 emissions, while N60 and N90 significantly increased soil N 2 O emissions. In the IM plots, N30 and N60 significantly increased soil CO 2 and N 2 O emissions, while N60 and N90 significantly decreased soil CH 4 uptake. Overall, in both CM and IM plots, N30 and N60 significantly increased global warming potentials, whereas N90 did not significantly affect global warming potential. However, N addition significantly decreased the Q 10 value of soil CO 2 emissions under IM but not under CM. Soil microbial biomass carbon was significantly and positively correlated with soil CO 2 and N 2 O emissions but significantly and negatively correlated with soil CH 4 uptake. Conclusion Our results indicate that management scheme effects should be considered when assessing the effect of atmospheric N deposition on GHG emissions in bamboo plantations.

    Consulter sur forestecosyst.springeropen.com
  • Hu, X., He, Y., Kong, Z., Zhang, J., Yuan, M., Yu, L., Peng, C., & Zhu, Q. (2021). Evaluation of Future Impacts of Climate Change, CO2, and Land Use Cover Change on Global Net Primary Productivity Using a Processed Model. Land, 10(4), 365. https://doi.org/10.3390/land10040365

    Few studies have focused on the combined impact of climate change, CO2, and land-use cover change (LUCC), especially the evaluation of the impact of LUCC on net primary productivity (NPP) in the future. In this study, we simulated the overall NPP change trend from 2010 to 2100 and its response to climatic factors, CO2 concentration, and LUCC conditions under three typical emission scenarios (Representative Concentration Pathway RCP2.6, RCP4.5, and RCP8.5). (1) Under the predicted global pattern, NPP showed an increasing trend, with the most prominent variation at the end of the century. The increasing trend is mainly caused by the positive effect of CO2 on NPP. However, the increasing trend of LUCC has only a small positive effect. (2) Under the RCP 8.5 scenario, from 2090 to 2100, CO2 has the most significant positive impact on tropical areas, reaching 8.328 Pg C Yr−1. Under the same conditions, climate change has the greatest positive impact on the northern high latitudes (1.175 Pg C Yr−1), but it has the greatest negative impact on tropical areas, reaching −4.842 Pg C Yr−1. (3) The average contribution rate of LUCC to NPP was 6.14%. Under the RCP8.5 scenario, LUCC made the largest positive contribution on NPP (0.542 Pg C Yr−1) globally from 2010 to 2020.

    Consulter sur www.mdpi.com
  • Wang, H., Li, H., Liu, Z., Lv, J., Song, X., Li, Q., Jiang, H., & Peng, C. (2021). Observed Methane Uptake and Emissions at the Ecosystem Scale and Environmental Controls in a Subtropical Forest. Land, 10(9), 975. https://doi.org/10.3390/land10090975

    Methane (CH4) is one of the three most important greenhouse gases. To date, observations of ecosystem-scale methane (CH4) fluxes in forests are currently lacking in the global CH4 budget. The environmental factors controlling CH4 flux dynamics remain poorly understood at the ecosystem scale. In this study, we used a state-of-the-art eddy covariance technique to continuously measure the CH4 flux from 2016 to 2018 in a subtropical forest of Zhejiang Province in China, quantify the annual CH4 budget and investigate its control factors. We found that the total annual CH4 budget was 1.15 ± 0.28~4.79 ± 0.49 g CH4 m−2 year−1 for 2017–2018. The daily CH4 flux reached an emission peak of 0.145 g m−2 d−1 during winter and an uptake peak of −0.142 g m−2 d−1 in summer. During the whole study period, the studied forest region acted as a CH4 source (78.65%) during winter and a sink (21.35%) in summer. Soil temperature had a negative relationship (p < 0.01; R2 = 0.344) with CH4 flux but had a positive relationship with soil moisture (p < 0.01; R2 = 0.348). Our results showed that soil temperature and moisture were the most important factors controlling the ecosystem-scale CH4 flux dynamics of subtropical forests in the Tianmu Mountain Nature Reserve in Zhejiang Province, China. Subtropical forest ecosystems in China acted as a net source of methane emissions from 2016 to 2018, providing positive feedback to global climate warming.

    Consulter sur www.mdpi.com
  • Yang, Y., Gou, R., Li, W., Kassout, J., Wu, J., Wang, L., Peng, C., & Lin, G. (2021). Leaf Trait Covariation and Its Controls: A Quantitative Data Analysis Along a Subtropical Elevation Gradient. Journal of Geophysical Research: Biogeosciences, 126(7), e2021JG006378. https://doi.org/10.1029/2021JG006378

    Abstract Elevation gradients are frequently treated as useful space‐for‐time substitutions for inferring trait variations in response to different environmental conditions. The independent variations in leaf traits in response to elevation are well understood, but far less is known about trait covariation and its controls. This limits our understanding of the principles and mechanisms of leaf trait covariation, especially along elevation gradients in subtropical forests. Here, we studied the covariation among seven functional traits, including leaf size (LS), leaf nitrogen per unit mass ( N mass ), leaf nitrogen per unit area ( N area ), leaf mass per area (LMA), leaf dry matter content (LDMC), leaf thickness (LT) and the leaf internal‐to‐ambient CO 2 ratio ( C i : C a , termed χ ). Sampling was conducted on 41 species in a subtropical forest on Mount Huangshan, China, and the data were analyzed using multivariate analysis and variance partitioning procedures. We found that (a) The first three principal components captured 79% of the total leaf trait covariation, which was caused mainly by within site differences; (b) N mass and LDMC were positively correlated with soil water content (SW) and negatively correlated with vapor pressure deficit (VPD), while χ showed negative relationships with elevation; and (c) 78% of the variation in the studied plant functional traits could be explained by climate, soil, and family controls in combination, while family distribution was the most important determining factor for trait covariation along the elevation gradient. Our findings provide relevant insights into plant adaptation to environmental gradients and present useful guidelines for ecosystem management and planning. , Plain Language Summary Changes of plant functional traits along elevation gradient are important indicators which reflect the behaviors and adaptations of plants. In this study we first analyzed the dominant signals of seven leaf functional traits and then we depicted the response of seven traits to changing elevation environments, and finally we quantified the contributions of climate, soil, and vegetation distribution. Our findings validate the hypothesis that trait covariation, and thus adaptation, occurs in response to the elevation gradients that most plant species experience. , Key Points The first three principal components captured 79% of the total leaf trait covariation Leaf nitrogen content ( N mass ) and leaf dry mass content (LDMC) were positively correlated with soil water content and negatively correlated with vapor pressure deficit Vegetation (family) distribution was the most important determining factor for trait covariation along the elevation gradient

    Consulter sur agupubs.onlinelibrary.wiley.com
  • He, M., Bräuning, A., Rossi, S., Gebrekirstos, A., Grießinger, J., Mayr, C., Peng, C., & Yang, B. (2021). No evidence for carryover effect in tree rings based on a pulse-labelling experiment on Juniperus communis in South Germany. Trees, 35(2), 493–502. https://doi.org/10.1007/s00468-020-02051-1
    Consulter sur link.springer.com
  • 1
  • ...
  • 10
  • 11
  • 12
  • 13
  • 14
  • ...
  • 22
  • Page 12 de 22
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Flux web personnalisé
Dernière mise à jour depuis la base de données : 05/11/2025 06:00 (UTC)

Explorer

Auteur·e·s

  • Blanchet, Jean-Pierre (1)
  • Peng, Changhui (424)

Type de ressource

  • Article de colloque (1)
  • Article de revue (423)
  • Livre (1)

Année de publication

  • Entre 1900 et 1999 (6)
    • Entre 1990 et 1999 (6)
      • 1997 (1)
      • 1998 (2)
      • 1999 (3)
  • Entre 2000 et 2025 (419)
    • Entre 2000 et 2009 (51)
      • 2000 (3)
      • 2001 (3)
      • 2002 (7)
      • 2003 (3)
      • 2004 (2)
      • 2005 (3)
      • 2006 (5)
      • 2007 (7)
      • 2008 (8)
      • 2009 (10)
    • Entre 2010 et 2019 (215)
      • 2010 (6)
      • 2011 (25)
      • 2012 (13)
      • 2013 (22)
      • 2014 (27)
      • 2015 (13)
      • 2016 (22)
      • 2017 (18)
      • 2018 (27)
      • 2019 (42)
    • Entre 2020 et 2025 (153)
      • 2020 (31)
      • 2021 (41)
      • 2022 (27)
      • 2023 (34)
      • 2024 (20)

Explorer

UQAM - Université du Québec à Montréal

  • Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • bibliotheques@uqam.ca

Accessibilité Web