Accéder au contenu Accéder au menu principal Accéder à la recherche
Accéder au contenu Accéder au menu principal
UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
UQAM logo
Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • Bibliographie
  • Accueil
  1. Vitrine des bibliographies
  2. Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  3. Résultats
  • Accueil

Votre recherche

Réinitialiser la recherche

Aide

L’interface de recherche est composée de trois sections : Rechercher, Explorer et Résultats. Celles-ci sont décrites en détail ci-dessous.

Vous pouvez lancer une recherche aussi bien à partir de la section Rechercher qu’à partir de la section Explorer.

Rechercher

Cette section affiche vos critères de recherche courants et vous permet de soumettre des mots-clés à chercher dans la bibliographie.

  • Chaque nouvelle soumission ajoute les mots-clés saisis à la liste des critères de recherche.
  • Pour lancer une nouvelle recherche plutôt qu’ajouter des mots-clés à la recherche courante, utilisez le bouton Réinitialiser la recherche, puis entrez vos mots-clés.
  • Pour remplacer un mot-clé déjà soumis, veuillez d’abord le retirer en décochant sa case à cocher, puis soumettre un nouveau mot-clé.
  • Vous pouvez contrôler la portée de votre recherche en choisissant où chercher. Les options sont :
    • Partout : repère vos mots-clés dans tous les champs des références bibliographiques ainsi que dans le contenu textuel des documents disponibles.
    • Dans les auteurs ou contributeurs : repère vos mots-clés dans les noms d’auteurs ou de contributeurs.
    • Dans les titres : repère vos mots-clés dans les titres.
    • Dans tous les champs : repère vos mots-clés dans tous les champs des notices bibliographiques.
    • Dans les documents : repère vos mots-clés dans le contenu textuel des documents disponibles.
  • Vous pouvez utiliser les opérateurs booléens avec vos mots-clés :
    • ET : repère les références qui contiennent tous les termes fournis. Ceci est la relation par défaut entre les termes séparés d’un espace. Par exemple, a b est équivalent à a ET b.
    • OU : repère les références qui contiennent n’importe lequel des termes fournis. Par exemple, a OU b.
    • SAUF : exclut les références qui contiennent le terme fourni. Par exemple, SAUF a.
    • Les opérateurs booléens doivent être saisis en MAJUSCULES.
  • Vous pouvez faire des groupements logiques (avec les parenthèses) pour éviter les ambiguïtés lors de la combinaison de plusieurs opérateurs booléens. Par exemple, (a OU b) ET c.
  • Vous pouvez demander une séquence exacte de mots (avec les guillemets droits), par exemple "a b c". Par défaut la différence entre les positions des mots est de 1, ce qui signifie qu’une référence sera repérée si elle contient les mots et qu’ils sont consécutifs. Une distance maximale différente peut être fournie (avec le tilde), par exemple "a b"~2 permet jusqu’à un terme entre a et b, ce qui signifie que la séquence a c b pourrait être repérée aussi bien que a b.
  • Vous pouvez préciser que certains termes sont plus importants que d’autres (avec l’accent circonflexe). Par exemple, a^2 b c^0.5 indique que a est deux fois plus important que b dans le calcul de pertinence des résultats, tandis que c est de moitié moins important. Ce type de facteur peut être appliqué à un groupement logique, par exemple (a b)^3 c.
  • La recherche par mots-clés est insensible à la casse et les accents et la ponctuation sont ignorés.
  • Les terminaisons des mots sont amputées pour la plupart des champs, tels le titre, le résumé et les notes. L’amputation des terminaisons vous évite d’avoir à prévoir toutes les formes possibles d’un mot dans vos recherches. Ainsi, les termes municipal, municipale et municipaux, par exemple, donneront tous le même résultat. L’amputation des terminaisons n’est pas appliquée au texte des champs de noms, tels auteurs/contributeurs, éditeur, publication.

Explorer

Cette section vous permet d’explorer les catégories associées aux références.

  • Les catégories peuvent servir à affiner votre recherche. Cochez une catégorie pour l’ajouter à vos critères de recherche. Les résultats seront alors restreints aux références qui sont associées à cette catégorie.
  • Dé-cochez une catégorie pour la retirer de vos critères de recherche et élargir votre recherche.
  • Les nombres affichés à côté des catégories indiquent combien de références sont associées à chaque catégorie considérant les résultats de recherche courants. Ces nombres varieront en fonction de vos critères de recherche, de manière à toujours décrire le jeu de résultats courant. De même, des catégories et des facettes entières pourront disparaître lorsque les résultats de recherche ne contiennent aucune référence leur étant associées.
  • Une icône de flèche () apparaissant à côté d’une catégorie indique que des sous-catégories sont disponibles. Vous pouvez appuyer sur l’icône pour faire afficher la liste de ces catégories plus spécifiques. Par la suite, vous pouvez appuyer à nouveau pour masquer la liste. L’action d’afficher ou de masquer les sous-catégories ne modifie pas vos critères de recherche; ceci vous permet de rapidement explorer l’arborescence des catégories, si désiré.

Résultats

Cette section présente les résultats de recherche. Si aucun critère de recherche n’a été fourni, elle montre toute la bibliographie (jusqu’à 20 références par page).

  • Chaque référence de la liste des résultats est un hyperlien vers sa notice bibliographique complète. À partir de la notice, vous pouvez continuer à explorer les résultats de recherche en naviguant vers les notices précédentes ou suivantes de vos résultats de recherche, ou encore retourner à la liste des résultats.
  • Des hyperliens supplémentaires, tels que Consulter le document ou Consulter sur [nom d’un site web], peuvent apparaître sous un résultat de recherche. Ces liens vous fournissent un accès rapide à la ressource, des liens que vous trouverez également dans la notice bibliographique.
  • Le bouton Résumés vous permet d’activer ou de désactiver l’affichage des résumés dans la liste des résultats de recherche. Toutefois, activer l’affichage des résumés n’aura aucun effet sur les résultats pour lesquels aucun résumé n’est disponible.
  • Diverses options sont fournies pour permettre de contrôler l’ordonnancement les résultats de recherche. L’une d’elles est l’option de tri par Pertinence, qui classe les résultats du plus pertinent au moins pertinent. Le score utilisé à cette fin prend en compte la fréquence des mots ainsi que les champs dans lesquels ils apparaissent. Par exemple, si un terme recherché apparaît fréquemment dans une référence ou est l’un d’un très petit nombre de termes utilisé dans cette référence, cette référence aura probablement un score plus élevé qu’une autre où le terme apparaît moins fréquemment ou qui contient un très grand nombre de mots. De même, le score sera plus élevé si un terme est rare dans l’ensemble de la bibliographie que s’il est très commun. De plus, si un terme de recherche apparaît par exemple dans le titre d’une référence, le score de cette référence sera plus élevé que s’il apparaissait dans un champ moins important tel le résumé.
  • Le tri par Pertinence n’est disponible qu’après avoir soumis des mots-clés par le biais de la section Rechercher.
  • Les catégories sélectionnées dans la section Explorer n’ont aucun effet sur le tri par pertinence. Elles ne font que filtrer la liste des résultats.
Dans les auteurs ou contributeurs
  • "Peng, Changhui"

Résultats 437 ressources

PertinenceDate décroissanteDate croissanteAuteur A-ZAuteur Z-ATitre A-ZTitre Z-A
  • 1
  • 2
  • 3
  • 4
  • 5
  • ...
  • 22
  • Page 1 de 22
Résumés
  • Peng, C. (2011). Focus on quality, not just quantity. Nature, 475(7356), 267–267. https://doi.org/10.1038/475267a
    Consulter sur www.nature.com
  • Peng, C. (2000). From static biogeographical model to dynamic global vegetation model: a global perspective on modelling vegetation dynamics. Ecological Modelling, 135(1), 33–54. https://doi.org/10.1016/S0304-3800(00)00348-3
    Consulter sur linkinghub.elsevier.com
  • Peng, C. (2000). Growth and yield models for uneven-aged stands: past, present and future. Forest Ecology and Management, 132(2–3), 259–279. https://doi.org/10.1016/S0378-1127(99)00229-7
    Consulter sur linkinghub.elsevier.com
  • Peng, C. (2000). Understanding the role of forest simulation models in sustainable forest management. Environmental Impact Assessment Review, 20(4), 481–501. https://doi.org/10.1016/S0195-9255(99)00044-X
    Consulter sur linkinghub.elsevier.com
  • Peng, C., & Apps, M. J. (1999). Modelling the response of net primary productivity (NPP) of boreal forest ecosystems to changes in climate and fire disturbance regimes. Ecological Modelling, 122(3), 175–193. https://doi.org/10.1016/S0304-3800(99)00137-4
    Consulter sur linkinghub.elsevier.com
  • Peng, C., & Apps, M. J. (1998). simulating carbon dynamics along the Boreal Forest Transect Case Study (BFTCS) in central Canada: 2. Sensitivity to climate change. Global Biogeochemical Cycles, 12(2), 393–402. https://doi.org/10.1029/98GB00352

    The effects of climate change and doubling atmospheric CO 2 on carbon dynamics of the boreal forest in the area of the Boreal Forest Transect Case Study in central Canada were investigated using the process‐based plant‐soil model CENTURY 4.0. The results presented here suggest that (1) across the transect climate change would result in increased total carbon in vegetation biomass but decreased overall carbon in soil; (2) increased atmospheric CO 2 concentration under current climatic patterns would result in increased total carbon in vegetation and in soil organic matter; and (3) combined climate change and elevated CO 2 would increase both net primary productivity and decomposition rates relative to the current climate condition, but their combined action would be a reduction of soil carbon losses relative to those due to climate change alone. The interactive effects of climate change and elevated CO 2 , however, are not a simple additive combination of the individual responses. The responses to climate change and elevated CO 2 vary across the climate gradient from southern to northern sites on the transect. The present simulations indicate that the northern sites are more sensitive to climate change than the southern sites are, but these simulations do not consider likely changes in the disturbance regime or changes in forest species distribution.

    Consulter sur agupubs.onlinelibrary.wiley.com
  • Peng, C., & Apps, M. J. (1997). Contribution of China to the global carbon cycle since the last glacial maximum. Tellus B: Chemical and Physical Meteorology, 49(4), 393. https://doi.org/10.3402/tellusb.v49i4.15977
    Consulter sur b.tellusjournals.se
  • Quillet, A., Peng, C., & Garneau, M. (2010). Toward dynamic global vegetation models for simulating vegetation–climate interactions and feedbacks: recent developments, limitations, and future challenges. Environmental Reviews, 18(NA), 333–353. https://doi.org/10.1139/A10-016

    There is a lack in representation of biosphere–atmosphere interactions in current climate models. To fill this gap, one may introduce vegetation dynamics in surface transfer schemes or couple global climate models (GCMs) with vegetation dynamics models. As these vegetation dynamics models were not designed to be included in GCMs, how are the latest generation dynamic global vegetation models (DGVMs) suitable for use in global climate studies? This paper reviews the latest developments in DGVM modelling as well as the development of DGVM–GCM coupling in the framework of global climate studies. Limitations of DGVM and coupling are shown and the challenges of these methods are highlighted. During the last decade, DGVMs underwent major changes in the representation of physical and biogeochemical mechanisms such as photosynthesis and respiration processes as well as in the representation of regional properties of vegetation. However, several limitations such as carbon and nitrogen cycles, competition, land-use and land-use changes, and disturbances have been identified. In addition, recent advances in model coupling techniques allow the simulation of the vegetation–atmosphere interactions in GCMs with the help of DGVMs. Though DGVMs represent a good alternative to investigate vegetation–atmosphere interactions at a large scale, some weaknesses in evaluation methodology and model design need to be further investigated to improve the results.

    Consulter sur www.nrcresearchpress.com
  • Lei, X., Wang, W., & Peng, C. (2009). Relationships between stand growth and structural diversity in spruce-dominated forests in New Brunswick, Canada. Canadian Journal of Forest Research, 39(10), 1835–1847. https://doi.org/10.1139/X09-089

    Relationships between stand growth and structural diversity were examined in spruce-dominated forests in New Brunswick, Canada. Net growth, survivor growth, mortality, and recruitment represented stand growth, and tree species, size, and height diversity indices were used to describe structural diversity. Mixed-effects second-order polynomial regressions were employed for statistical analysis. Results showed stand structural diversity had a significant positive effect on net growth and survivor growth by volume but not on mortality and recruitment. Among the tested diversity indices, the integrated diversity of tree species and height contributed most to stand net growth and survivor growth. Structural diversity showed increasing trends throughout the developmental stages from young, immature, mature, and overmature forest stands. This relationship between stand growth and structural diversity may be due to stands featuring high structural diversity that enhances niche complementarities of resource use because trees exist within different horizontal and vertical layers, and strong competition resulted from size differences among trees. It is recommended to include effects of species and structural diversity in forest growth modeling initiatives. Moreover, uneven-aged stand management in conjunction with selective or partial cutting to maintain high structural diversity is also recommended to maintain biodiversity and rapid growth in spruce-dominated forests.

    Consulter sur www.nrcresearchpress.com
  • Li, M., Peng, C., & He, N. (2022). Global patterns of particulate organic carbon export from land to the ocean. Ecohydrology, 15(2), e2373. https://doi.org/10.1002/eco.2373

    Abstract Global rivers and streams are important carbon transport pathways from land to the ocean. However, few studies have quantified terrigenous carbon dynamics in river ecosystems and its variations due to climate change and anthropogenic perturbations. Therefore, our study analysed fluvial particulate organic carbon (POC) and developed a processed‐based model (TRIPLEX‐HYDRA) to simulate the production, transport and removal (i.e., deposition, degradation and dam retention) processes of fluvial POC along the land–ocean aquatic continuum (LOAC). Based on our results, approximately 0.29 Pg of POC is exported from land to the ocean through rivers each year. More specifically, we found that rivers at low latitudes (30°S–30°N, 0.18 Pg yr −1 ) and high northern latitudes (60°N–90°N, 0.05 Pg yr −1 ) had higher POC fluxes compared to rivers in other regions. This high POC flux is related to strong erosion rates and high soil organic carbon storage. Additionally, our model simulation revealed that total POC flux from global river has not significantly changed from 1983 to 2015 but displays markedly decreased or increased trend at regional scale. These regional variations in POC export are affected by climate warming and dam construction. Moreover, approximately 0.46 Pg of POC is deposited or trapped by dams along the LOAC system, which plays a vital role in the global river carbon budget. Although some limitations and uncertainties remain, this study establishes a theoretical and methodological basis for quantifying riverine POC dynamics in the LOAC system.

    Consulter sur onlinelibrary.wiley.com
  • Zhang, L., Peng, C., & Dang, Q. (2004). Individual-tree basal area growth models for jack pine and black spruce in northern Ontario. The Forestry Chronicle, 80(3), 366–374. https://doi.org/10.5558/tfc80366-3

    Individual-tree models of five-year basal area growth were developed for jack pine (Pinus banksiana Lamb.) and black spruce (Picea mariana (Mill.) BSP) in northern Ontario. Tree growth data were collected from long-term permanent plots of pure and mixed stands of the two species. The models were fitted using mixed model methods due to correlated remeasurements of tree growth over time. Since the data covered a wide range of stand ages, stand conditions and tree sizes, serious heterogeneous variances existed in the data. Therefore, the coefficients of the final models were obtained using weighted regression techniques. The models for the two species were evaluated across 4-cm diameter classes using independent data. The results indicated (1) the models of jack pine and black spruce produced similar prediction errors and biases for intermediate-sized trees (1228 cm in tree diameter), (2) both models yielded relatively large errors and biases for larger trees (> 28 cm) than those for smaller trees, and (3) the jack pine model produced much larger errors and biases for small-sized trees (< 12 cm) than did the black spruce model. Key words: mixed models, repeated measures, model validation

    Consulter sur pubs.cif-ifc.org
  • Wu, H., Guo, Z., & Peng, C. (2003). Land use induced changes of organic carbon storage in soils of China. Global Change Biology, 9(3), 305–315. https://doi.org/10.1046/j.1365-2486.2003.00590.x

    Abstract Using the data compiled from China's second national soil survey and an improved method of soil carbon bulk density, we have estimated the changes of soil organic carbon due to land use, and compared the spatial distribution and storage of soil organic carbon (SOC) in cultivated soils and noncultivated soils in China. The results reveal that ∼  57% of the cultivated soil subgroups ( ∼  31% of the total soil surface) have experienced a significant carbon loss, ranging from 40% to 10% relative to their noncultivated counterparts. The most significant carbon loss is observed for the non‐irrigated soils (dry farmland) within a semiarid/semihumid belt from northeastern to southwestern China, with the maximum loss occurring in northeast China. On the contrary, SOC has increased in the paddy and irrigated soils in northwest China. No significant change is observed for forest soils in southern China, grassland and desert soils in northwest China, as well as irrigated soils in eastern China. The SOC storage and density under noncultivated conditions in China are estimated to ∼  77.4 Pg (10 15  g) and ∼  8.8 kg C m −2 , respectively, compared to a SOC storage of ∼  70.3 Pg and an average SOC density of ∼  8.0 kg C m −2 under the present‐day conditions. This suggests a loss of ∼  7.1 Pg SOC and a decrease of ∼  0.8 kg C m −2 SOC density due to increasing human activities, in which the loss in organic horizons has contributed to ∼  77%. This total loss of SOC in China induced by land use represents ∼  9.5% of the world's SOC decrease. This amount is equivalent to ∼  3.5 ppmv of the atmospheric CO 2 increase. Since ∼  78% of the currently cultivated soils in China have been degraded to a low/medium productivities and are responsible for most of the SOC loss, an improved land management, such as the development of irrigated and paddy land uses, would have a considerable potential in restoring the SOC storage. Assuming a restoration of ∼  50% of the lost SOC during the next 20–50 years, the soils in China would absorb ∼  3.5 Pg of carbon from the atmosphere.

    Consulter sur onlinelibrary.wiley.com
  • Wu, H., Guo, Z., & Peng, C. (2003). Distribution and storage of soil organic carbon in China. Global Biogeochemical Cycles, 17(2), 2001GB001844. https://doi.org/10.1029/2001GB001844

    Surface soils hold the largest terrestrial organic carbon pool, although estimates of the world's soil organic carbon storage remain controversial, largely due to spatial data gaps or insufficient data density. In this study, spatial distribution and storage of soil organic carbon in China are estimated using the published data from 34,411 soil profiles investigated during China's second national soil survey. Results show that organic carbon density in soils varies from 0.73 to 70.79 kg C/m 2 with the majority ranging between 4.00 and 11.00 kg C/m 2 . Carbon density decreases from east to west. A general southward increase is obvious for western China, while carbon density decreases from north to south in eastern China. Highest values are observed in forest soils in northeast China and in subalpine soils in the southeastern part of the Tibetan Plateau. The average density of ∼8.01 kg C/m 2 in China is lower than the world's mean organic carbon density in soil (∼10.60 kg C/m 2 ), mainly due to the extended arid and semi‐arid regions. Total organic carbon storage in soils in China is estimated to be ∼70.31 Pg C, representing ∼4.7% of the world storage. Carbon storage in the surface organic horizons which is most sensitive to interactions with the atmosphere and environmental change is ∼32.54 Pg C.

    Consulter sur agupubs.onlinelibrary.wiley.com
  • Peng, C., Zhang, L., & Liu, J. (2001). Developing and Validating Nonlinear Height–Diameter Models for Major Tree Species of Ontario’s Boreal Forests. Northern Journal of Applied Forestry, 18(3), 87–94. https://doi.org/10.1093/njaf/18.3.87

    Abstract Six commonly used nonlinear growth functions were fitted to individual tree height-diameter data of nine major tree species in Ontario's boreal forests. A total of 22,571 trees was collected from new permanent sample plots across the northeast and northwest of Ontario.The available data for each species were split into two sets: the majority (90%) was used to estimate model parameters, and the remaining data (10%) were reserved to validate the models. The performance of the models was compared and evaluated by model, R2, mean difference, and mean absolute difference. The results showed that these six sigmoidal models were able to capture the height–diameter relationships and fit the data equally well, but produced different asymptote estimates. Sigmoidal models such as Chapman–Richards, Weibull, and Schnute functions provided the most satisfactory height predictions. The effect of model performance on tree volume estimation was also investigated. Tree volumes of different species were computed by Honer's volume equations using a range of diameters and the predicted tree total height from the six models. For trees with diameter less than 55 cm, the six height-diameter models produced very similar results for all species, while more differentiation among the models was observed for large-sized trees (e.g., diameters > 80 cm). North. J. Appl. For. 18:87–94.

    Consulter sur academic.oup.com
  • Yue, K., Peng, Y., Peng, C., Yang, W., Peng, X., & Wu, F. (2016). Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis. Scientific Reports, 6(1), 19895. https://doi.org/10.1038/srep19895

    Abstract Elevated nitrogen (N) deposition alters the terrestrial carbon (C) cycle, which is likely to feed back to further climate change. However, how the overall terrestrial ecosystem C pools and fluxes respond to N addition remains unclear. By synthesizing data from multiple terrestrial ecosystems, we quantified the response of C pools and fluxes to experimental N addition using a comprehensive meta-analysis method. Our results showed that N addition significantly stimulated soil total C storage by 5.82% ([2.47%, 9.27%], 95% CI, the same below) and increased the C contents of the above- and below-ground parts of plants by 25.65% [11.07%, 42.12%] and 15.93% [6.80%, 25.85%], respectively. Furthermore, N addition significantly increased aboveground net primary production by 52.38% [40.58%, 65.19%] and litterfall by 14.67% [9.24%, 20.38%] at a global scale. However, the C influx from the plant litter to the soil through litter decomposition and the efflux from the soil due to microbial respiration and soil respiration showed insignificant responses to N addition. Overall, our meta-analysis suggested that N addition will increase soil C storage and plant C in both above- and below-ground parts, indicating that terrestrial ecosystems might act to strengthen as a C sink under increasing N deposition.

    Consulter sur www.nature.com
  • Wang, X., Zhou, Z., Xiang, Y., Peng, C., & Peng, C. (2024). Effects of street plants on atmospheric particulate dispersion in urban streets: A review. Environmental Reviews, er-2023-0103. https://doi.org/10.1139/er-2023-0103

    Numerous empirical studies have demonstrated that street trees not only reduce dust pollution and absorb particulate matter (PM) but also improve microclimates, providing both ecological functions and aesthetic value. However, recent research has revealed that street tree canopy cover can impede the dispersion of atmospheric PM within street canyons, leading to the accumulation of street pollutants. Although many studies have investigated the impact of street trees on air pollutant dispersion within street canyons, the extent of their influence remains unclear and uncertain. Pollutant accumulation corresponds to the specific characteristics of individual street canyons, coupled with meteorological factors and pollution source strength. Notably, the characteristics of street tree canopy cover also exert a significant influence. There is still a quantitative research gap on street tree cover impacts with respect to pollution and dust reduction control measures within street spaces. To improve urban traffic environments, policymakers have mainly focused on scientifically based street vegetation deployment initiatives in building ecological garden cities and improving the living environment. To address uncertainties regarding the influence of street trees on the dispersion of atmospheric PM in urban streets, this study reviews dispersion mechanisms and key atmospheric PM factors in urban streets, summarizes the research approaches used to conceptualize atmospheric PM dispersion in urban street canyons, and examines urban plant efficiency in reducing atmospheric PM. Furthermore, we also address current challenges and future directions in this field to provide a more comprehensive understanding of atmospheric PM dispersion in urban streets and the role that street trees play in mitigating air pollution.

    Consulter sur cdnsciencepub.com
  • Zhou, X., Peng, C., & Dang, Q.-L. (2006). Formulating and parameterizing the allocation of net primary productivity for modeling overmature stands in boreal forest ecosystems. Ecological Modelling, 195(3–4), 264–272. https://doi.org/10.1016/j.ecolmodel.2005.11.022
    Consulter sur linkinghub.elsevier.com
  • Epule, E. T., Peng, C., & Mafany, N. M. (2011). Methane Emissions from Paddy Rice Fields: Strategies towards Achieving A Win-Win Sustainability Scenario between Rice Production and Methane Emission Reduction. Journal of Sustainable Development, 4(6), p188. https://doi.org/10.5539/jsd.v4n6p188
    Consulter sur www.ccsenet.org
  • Du, H., Wang, M., Liu, Y., Guo, M., Peng, C., & Li, P. (2022). Responses of autumn vegetation phenology to climate change and urbanization at northern middle and high latitudes. International Journal of Applied Earth Observation and Geoinformation, 115, 103086. https://doi.org/10.1016/j.jag.2022.103086
    Consulter sur linkinghub.elsevier.com
  • Lei, X., Peng, C., Wang, H., & Zhou, X. (2009). Individual height–diameter models for young black spruce ( Picea mariana ) and jack pine ( Pinus banksiana ) plantations in New Brunswick, Canada. The Forestry Chronicle, 85(1), 43–56. https://doi.org/10.5558/tfc85043-1

    Historically, height–diameter models have mainly been developed for mature trees; consequently, few height–diameter models have been calibrated for young forest stands. In order to develop equations predicting the height of trees with small diameters, 46 individual height–diameter models were fitted and tested in young black spruce (Picea mariana) and jack pine (Pinus banksiana) plantations between the ages of 4 to 8 years, measured from 182 plots in New Brunswick, Canada. The models were divided into 2 groups: a diameter group and a second group applying both diameter and additional stand- or tree-level variables (composite models). There was little difference in predicting tree height among the former models (Group I) while the latter models (Group II) generally provided better prediction. Based on goodness of fit (R 2 and MSE), prediction ability (the bias and its associated prediction and tolerance intervals in absolute and relative terms), and ease of application, 2 Group II models were recommended for predicting individual tree heights within young black spruce and jack pine forest stands. Mean stand height was required for application of these models. The resultant tolerance intervals indicated that most errors (95%) associated with height predictions would be within the following limits (a 95% confidence level): [-0.54 m, 0.54 m] or [-14.7%, 15.9%] for black spruce and [-0.77 m, 0.77 m] or [-17.1%, 18.6%] for jack pine. The recommended models are statistically reliable for growth and yield applications, regeneration assessment and management planning. Key words: composite model, linear model, model calibration, model validation, prediction interval, tolerance interval

    Consulter sur pubs.cif-ifc.org
  • 1
  • 2
  • 3
  • 4
  • 5
  • ...
  • 22
  • Page 1 de 22
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Flux web personnalisé
Dernière mise à jour depuis la base de données : 24/05/2025 05:00 (UTC)

Explorer

Auteur·e·s

  • Blanchet, Jean-Pierre (1)
  • Peng, Changhui (426)

Type de ressource

  • Article de colloque (1)
  • Article de revue (435)
  • Livre (1)

Année de publication

  • Entre 1900 et 1999 (6)
    • Entre 1990 et 1999 (6)
      • 1997 (1)
      • 1998 (2)
      • 1999 (3)
  • Entre 2000 et 2025 (431)
    • Entre 2000 et 2009 (51)
      • 2000 (3)
      • 2001 (3)
      • 2002 (7)
      • 2003 (3)
      • 2004 (2)
      • 2005 (3)
      • 2006 (5)
      • 2007 (7)
      • 2008 (8)
      • 2009 (10)
    • Entre 2010 et 2019 (218)
      • 2010 (6)
      • 2011 (26)
      • 2012 (14)
      • 2013 (22)
      • 2014 (27)
      • 2015 (13)
      • 2016 (23)
      • 2017 (18)
      • 2018 (27)
      • 2019 (42)
    • Entre 2020 et 2025 (162)
      • 2020 (31)
      • 2021 (42)
      • 2022 (34)
      • 2023 (35)
      • 2024 (20)

Explorer

UQAM - Université du Québec à Montréal

  • Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • bibliotheques@uqam.ca

Accessibilité Web