Votre recherche
Résultats 437 ressources
-
The 2001–2012 MODIS MCD12Q1 land cover data and MOD17A3 NPP data were used to calculate changes in land cover in China and annual changes in net primary productivity (NPP) during a 12-year period and to quantitatively analyze the effects of land cover change on the NPP of China’s terrestrial ecosystems. The results revealed that during the study period, no changes in land cover type occurred in 7447.31 thousand km2 of China, while the area of vegetation cover increased by 160.97 thousand km2 in the rest of the country. Forest cover increased to 20.91%, which was mainly due to the conversion of large areas of savanna (345.19 thousand km2) and cropland (178.96 thousand km2) to forest. During the 12-year study period, the annual mean NPP of China was 2.70 PgC and increased by 0.25 PgC, from 2.50 to 2.75 PgC. Of this change, 0.21 PgC occurred in areas where there was no land cover change, while 0.04 PgC occurred in areas where there was land cover change. The contributions of forest and cropland to NPP exhibited increasing trends, while the contributions of shrubland and grassland to NPP decreased. Among these land cover types, the contributions of forest and cropland to the national NPP were the greatest, accounting for 40.97% and 27.95%, respectively, of the annual total NPP. There was no significant correlation between changes in forest area and changes in total annual NPP (R2 < 0.1), while the correlation coefficient for changes in cropland area and total annual NPP was 0.48. Additionally, the area of cropland converted to other land cover types was negatively correlated with the changes in NPP, and the loss of cropland caused a reduction in the national NPP.
-
The method of forest biomass estimation based on a relationship between the volume and biomass has been applied conventionally for estimating stand above- and below-ground biomass (SABB, t ha−1) from mean growing stock volume (m3 ha−1). However, few studies have reported on the diagnosis of the volume-SABB equations fitted using field data. This paper addresses how to (i) check parameters of the volume-SABB equations, and (ii) reduce the bias while building these equations. In our analysis, all equations were applied based on the measurements of plots (biomass or volume per hectare) rather than individual trees. The volume-SABB equation is re-expressed by two Parametric Equations (PEs) for separating regressions. Stem biomass is an intermediate variable (parametric variable) in the PEs, of which one is established by regressing the relationship between stem biomass and volume, and the other is created by regressing the allometric relationship of stem biomass and SABB. A graphical analysis of the PEs proposes a concept of “restricted zone,” which helps to diagnose parameters of the volume-SABB equations in regression analyses of field data. The sampling simulations were performed using pseudo data (artificially generated in order to test a model) for the model test. Both analyses of the regression and simulation demonstrate that the wood density impacts the parameters more than the allometric relationship does. This paper presents an applicable method for testing the field data using reasonable wood densities, restricting the error in field data processing based on limited field plots, and achieving a better understanding of the uncertainty in building those equations.
-
Abstract Climate change has a profound impact on the global carbon cycle, including effects on riverine carbon pools, which connect terrestrial, oceanic, and atmospheric carbon pools. Until now, terrestrial ecosystem models have rarely incorporated riverine carbon components into global carbon budgets. Here we developed a new process‐based model, TRIPLEX‐HYDRA (TRIPLEX‐hydrological routing algorithm), that considers the production, consumption, and transport processes of nonanthropogenic dissolved organic carbon (DOC) from soil to river ecosystems. After the parameter calibration, model results explained more than 50% of temporal variations in all but three rivers. Validation results suggested that DOC yield simulated by TRIPLEX‐HYDRA has a good fit ( R 2 = 0.61, n = 71, p < 0.001) with global river observations. And then, we applied this model for global rivers. We found that mean DOC yield of global river approximately 1.08 g C/m 2 year, where most high DOC yield appeared in the rivers from high northern or tropic regions. Furthermore, our results suggested that global riverine DOC flux appeared a significant decrease trend (average rate: 0.38 Pg C/year) from 1951 to 2015, although the variation patterns of DOC fluxes in global rivers are diverse. A decreasing trend in riverine DOC flux appeared in the middle and high northern latitude regions (30–90°N), which could be attributable to an increased flow path and DOC degradation during the transport process. Furthermore, increasing trend of DOC fluxes is found in rivers from tropical regions (30°S–30°N), which might be related to an increase in terrestrial organic carbon input. Many other rivers (e.g., Mississippi, Yangtze, and Lena rivers) experienced no significant changes under a changing environment. , Key Points Terrestrial ecosystem models rarely incorporate riverine DOC components into the global carbon cycle The TRIPLEX‐HYDRA model simulates the spatiotemporal variation in the DOC fluxes in global rivers The global riverine DOC flux simulated by the TRIPLEX‐HYDRA model has significantly decreased from 1951 to 2015
-
Abstract Aim Plant biomass allocation reflects the distribution of photosynthates among different organs in response to changing environmental conditions. Global change influences plant growth across terrestrial ecosystems, but impacts of individual and combined multiple global change factors (GCFs) on plant biomass allocation at the global scale are unclear. Location Global. Time period Contemporary. Major taxa studied Plants in terrestrial ecosystems. Methods We conducted a meta‐analysis of data comprising 4,180 pairwise observations to assess individual and combined effects of nitrogen addition (N), warming (W), elevated CO 2 (C), irrigation (I), and drought (D) on plant biomass allocation based on the ‘ratio‐based optimal partitioning’ and ‘isometric allocation’ hypotheses. Results We found that (a) ratio‐based plant biomass fractions of different organs were only minimally affected by individual and combined effects of the studied GCFs; (b) combined effects of two‐factor pairs of GCFs on plant biomass allocation were commonly additive, rather than synergistic or antagonistic; (c) moderator variables influenced, but seldom changed the direction of individual and combined effects of GCFs on plant biomass allocation; and (d) neither individual nor combined effects of the studied GCFs altered allometric relationships among different organs, indicating that patterns of plant biomass allocation under the environmental stress conditions exerted by the multiple GCFs were better explained by the isometric allocation rather than the ratio‐based optimal partitioning hypothesis. Main conclusions Our results show consistent patterns of allometric plant biomass partitioning under effects of multiple GCFs and provide evidence of an isometric plant biomass allocation trajectory in response to global change perturbations. These findings improve our understanding and prediction of terrestrial vegetation responses to future global change scenarios.
-
Constructed wetlands (CWs) are an emerging, environmentally friendly engineering system employed in China. They require lower investment and operation costs while providing higher treatment efficiency and more ecosystem services than conventional wastewater treatment methods. Introduced to China in 1987, CW systems used for wastewater treatment have rapidly increased in number, particularly since the late 1990s. This review summarizes the state‐of‐the‐art application of CW systems for water pollution treatment by reviewing the basics of the technology and its historical development and performance efficiency. Current progress, limitations, future concerns, and the challenges of CW technologies are also discussed. Also highlighted is the need for sufficient and appropriate data to assist in the further development of CW systems and the implementation of integrated “bottom‐up” and “top‐down” approaches by both the public in general and government bodies in particular.
-
Climate change is likely to lead to an increased frequency of droughts and floods, both of which are implicated in large-scale carbon allocation and tree mortality worldwide. Non-structural carbohydrates (NSCs) play an important role in tree survival under stress, but how NSC allocation changes in response to drought or waterlogging is still unclear. We measured soluble sugars (SS) and starch in leaves, twigs, stems and roots of Robinia pseudoacacia L. seedlings that had been subjected to a gradient in soil water availability from extreme drought to waterlogged conditions for a period of 30 days. Starch concentrations decreased and SS concentrations increased in tissues of R. pseudoacacia seedlings, such that the ratio of SS to starch showed a progressive increase under both drought and waterlogging stress. The strength of the response is asymmetric, with the largest increase occurring under extreme drought. While the increase in SS concentration in response to extreme drought is the largest in roots, the increase in the ratio of SS to starch is the largest in leaves. Individual components of SS showed different responses to drought and waterlogging across tissues: glucose concentrations increased significantly with drought in all tissues but showed little response to waterlogging in twigs and stems; sucrose and fructose concentrations showed marked increases in leaves and roots in response to drought but a greater response to drought and waterlogging in stems and twigs. These changes are broadly compatible with the roles of individual SS under conditions of water stress. While it is important to consider the role of NSC in buffering trees against mortality under stress, modelling this behaviour is unlikely to be successful unless it accounts for different responses within organs and the type of stress involved.
-
It is increasingly being recognized that global ecological research requires novel methods and strategies in which to combine process‐based ecological models and data in cohesive, systematic ways. In process‐based model applications, inherent spatial and temporal heterogeneities found within terrestrial ecosystems may lead to the uncertainties of model predictions. To reduce simulation uncertainties due to inaccurate model parameters, the Markov Chain Monte Carlo (MCMC) method was applied in this study to improve the estimations of four key parameters used in the process‐based ecosystem model of TRIPLEX‐FLUX. These four key parameters include a maximum photosynthetic carboxylation rate of 25°C (Vmax), an electron transport (Jmax) light‐saturated rate within the photosynthetic carbon reduction cycle of leaves, a coefficient of stomatal conductance (m), and a reference respiration rate of 10°C (R10). Seven forest flux tower sites located across North America were used to investigate and facilitate understanding of the daily variation in model parameters for three deciduous forests, three evergreen temperate forests, and one evergreen boreal forest. Eddy covariance CO 2 exchange measurements were assimilated to optimize the parameters in the year 2006. After parameter optimization and adjustment took place, net ecosystem production prediction significantly improved (by approximately 25%) compared to the CO 2 flux measurements taken at the seven forest ecosystem sites. Results suggest that greater seasonal variability occurs in broadleaf forests in respect to the selected parameters than in needleleaf forests. This study also demonstrated that the model‐data fusion approach by incorporating MCMC method is able to better estimate parameters and improve simulation accuracy for different ecosystems located across North America.
-
Abstract The effects of nitrogen (N) deposition on soil organic carbon (C) and greenhouse gas (GHG) emissions in terrestrial ecosystems are the main drivers affecting GHG budgets under global climate change. Although many studies have been conducted on this topic, we still have little understanding of how N deposition affects soil C pools and GHG budgets at the global scale. We synthesized a comprehensive dataset of 275 sites from multiple terrestrial ecosystems around the world and quantified the responses of the global soil C pool and GHG fluxes induced by N enrichment. The results showed that the soil organic C concentration and the soil CO 2 , CH 4 and N 2 O emissions increased by an average of 3.7%, 0.3%, 24.3% and 91.3% under N enrichment, respectively, and that the soil CH 4 uptake decreased by 6.0%. Furthermore, the percentage increase in N 2 O emissions (91.3%) was two times lower than that (215%) reported by Liu and Greaver ( Ecology Letters , 2009, 12:1103–1117). There was also greater stimulation of soil C pools (15.70 kg C ha −1 year −1 per kg N ha −1 year −1 ) than previously reported under N deposition globally. The global N deposition results showed that croplands were the largest GHG sources (calculated as CO 2 equivalents), followed by wetlands. However, forests and grasslands were two important GHG sinks. Globally, N deposition increased the terrestrial soil C sink by 6.34 Pg CO 2 /year. It also increased net soil GHG emissions by 10.20 Pg CO 2 ‐Geq (CO 2 equivalents)/year. Therefore, N deposition not only increased the size of the soil C pool but also increased global GHG emissions, as calculated by the global warming potential approach.
-
Abstract Spruce budworm (SBW) outbreaks are a major natural disturbance in boreal forests of eastern North America. During large‐scale infestations, aerial spraying of bacterial insecticides is used to suppress local high‐density SBW populations. While the primary goal of spraying is the protection of wood volume for later harvest, it should also maintain carbon stored in trees. This study provides the first quantitative analysis of the efficacy of aerial spraying against SBW on carbon dynamics in balsam fir, spruce, and mixed fir–spruce forests. In this study, we used the TRIPLEX‐Insect model to simulate carbon dynamics with and without spray applications in 14 sites of the boreal forest located in various regions of Québec. We found that the efficacy of aerial spraying on reducing annual defoliation was greater in the early stage (<5 yr since the outbreak began) of the outbreak than in later (5–10 yr since the outbreak began) stage. Our results showed that more net ecosystem productivity is maintained in balsam fir (the most vulnerable species) than in either spruce or mixed fir–spruce forests following spraying. Also, average losses in aboveground biomass due to the SBW following spraying occurred more slowly than without spraying in balsam fir forests. Our findings suggest that aerial spraying could be used to maintain carbon in conifer forests during SBW disturbances, but that the efficacy of spray programs is affected by host species and stage of the SBW outbreak.
-
Abstract Forest above‐ground biomass (AGB) is often estimated by converting the observed tree size using allometric scaling between the dry weight and size of an organism. However, the variations in biomass allocation and scaling between tree crowns and stems due to survival competition during a tree's lifecycle remain unclear. This knowledge gap can improve the understanding of modelling tree biomass allometry because traditional allometries ignore the dynamics of allocation. Herein, we characterised allometric scaling using the dynamic ratio ( r ) of the stem biomass (SB) to AGB and a dynamic exponent. The allometric models were biologically parameterised by the r values for initial, intermediate and final ages rather than only a regression result. The scaling was tested using field measurements of 421 species and 2213 different‐sized trees in pantropical regions worldwide. We found that the scaling fluctuated with tree size, and this fluctuation was driven by the trade‐off relationship of biomass allocation between the tree crown and stem depending on the dynamic crown trait. The allometric scaling between SB and AGB varied from 0.8 to 1.0 for a tree during its entire lifecycle. The fluctuations presented a general law for the allometric scaling of the pantropical tree biomass and size. Our model quantified the trade‐off and explained 94.1% of the allometric relationship between the SB and AGB (93.8% of which between D 2 H and AGB) for pantropical forests, which resulted in a better fit than that of the traditional model. Considering the effects of the trade‐off on modelling, the actual biomass of large trees could be substantially greater than conventional estimates. These results highlight the importance of coupling growth mechanisms in modelling allometry and provide a theoretical foundation for better describing and predicting forest carbon accumulation.