Accéder au contenu Accéder au menu principal Accéder à la recherche
Accéder au contenu Accéder au menu principal
UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
UQAM logo
Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • Bibliographie
  • Accueil
  1. Vitrine des bibliographies
  2. Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  3. Résultats
  • Accueil

Votre recherche

Réinitialiser la recherche

Aide

L’interface de recherche est composée de trois sections : Rechercher, Explorer et Résultats. Celles-ci sont décrites en détail ci-dessous.

Vous pouvez lancer une recherche aussi bien à partir de la section Rechercher qu’à partir de la section Explorer.

Rechercher

Cette section affiche vos critères de recherche courants et vous permet de soumettre des mots-clés à chercher dans la bibliographie.

  • Chaque nouvelle soumission ajoute les mots-clés saisis à la liste des critères de recherche.
  • Pour lancer une nouvelle recherche plutôt qu’ajouter des mots-clés à la recherche courante, utilisez le bouton Réinitialiser la recherche, puis entrez vos mots-clés.
  • Pour remplacer un mot-clé déjà soumis, veuillez d’abord le retirer en décochant sa case à cocher, puis soumettre un nouveau mot-clé.
  • Vous pouvez contrôler la portée de votre recherche en choisissant où chercher. Les options sont :
    • Partout : repère vos mots-clés dans tous les champs des références bibliographiques ainsi que dans le contenu textuel des documents disponibles.
    • Dans les auteurs ou contributeurs : repère vos mots-clés dans les noms d’auteurs ou de contributeurs.
    • Dans les titres : repère vos mots-clés dans les titres.
    • Dans tous les champs : repère vos mots-clés dans tous les champs des notices bibliographiques.
    • Dans les documents : repère vos mots-clés dans le contenu textuel des documents disponibles.
  • Vous pouvez utiliser les opérateurs booléens avec vos mots-clés :
    • ET : repère les références qui contiennent tous les termes fournis. Ceci est la relation par défaut entre les termes séparés d’un espace. Par exemple, a b est équivalent à a ET b.
    • OU : repère les références qui contiennent n’importe lequel des termes fournis. Par exemple, a OU b.
    • SAUF : exclut les références qui contiennent le terme fourni. Par exemple, SAUF a.
    • Les opérateurs booléens doivent être saisis en MAJUSCULES.
  • Vous pouvez faire des groupements logiques (avec les parenthèses) pour éviter les ambiguïtés lors de la combinaison de plusieurs opérateurs booléens. Par exemple, (a OU b) ET c.
  • Vous pouvez demander une séquence exacte de mots (avec les guillemets droits), par exemple "a b c". Par défaut la différence entre les positions des mots est de 1, ce qui signifie qu’une référence sera repérée si elle contient les mots et qu’ils sont consécutifs. Une distance maximale différente peut être fournie (avec le tilde), par exemple "a b"~2 permet jusqu’à un terme entre a et b, ce qui signifie que la séquence a c b pourrait être repérée aussi bien que a b.
  • Vous pouvez préciser que certains termes sont plus importants que d’autres (avec l’accent circonflexe). Par exemple, a^2 b c^0.5 indique que a est deux fois plus important que b dans le calcul de pertinence des résultats, tandis que c est de moitié moins important. Ce type de facteur peut être appliqué à un groupement logique, par exemple (a b)^3 c.
  • La recherche par mots-clés est insensible à la casse et les accents et la ponctuation sont ignorés.
  • Les terminaisons des mots sont amputées pour la plupart des champs, tels le titre, le résumé et les notes. L’amputation des terminaisons vous évite d’avoir à prévoir toutes les formes possibles d’un mot dans vos recherches. Ainsi, les termes municipal, municipale et municipaux, par exemple, donneront tous le même résultat. L’amputation des terminaisons n’est pas appliquée au texte des champs de noms, tels auteurs/contributeurs, éditeur, publication.

Explorer

Cette section vous permet d’explorer les catégories associées aux références.

  • Les catégories peuvent servir à affiner votre recherche. Cochez une catégorie pour l’ajouter à vos critères de recherche. Les résultats seront alors restreints aux références qui sont associées à cette catégorie.
  • Dé-cochez une catégorie pour la retirer de vos critères de recherche et élargir votre recherche.
  • Les nombres affichés à côté des catégories indiquent combien de références sont associées à chaque catégorie considérant les résultats de recherche courants. Ces nombres varieront en fonction de vos critères de recherche, de manière à toujours décrire le jeu de résultats courant. De même, des catégories et des facettes entières pourront disparaître lorsque les résultats de recherche ne contiennent aucune référence leur étant associées.
  • Une icône de flèche () apparaissant à côté d’une catégorie indique que des sous-catégories sont disponibles. Vous pouvez appuyer sur l’icône pour faire afficher la liste de ces catégories plus spécifiques. Par la suite, vous pouvez appuyer à nouveau pour masquer la liste. L’action d’afficher ou de masquer les sous-catégories ne modifie pas vos critères de recherche; ceci vous permet de rapidement explorer l’arborescence des catégories, si désiré.

Résultats

Cette section présente les résultats de recherche. Si aucun critère de recherche n’a été fourni, elle montre toute la bibliographie (jusqu’à 20 références par page).

  • Chaque référence de la liste des résultats est un hyperlien vers sa notice bibliographique complète. À partir de la notice, vous pouvez continuer à explorer les résultats de recherche en naviguant vers les notices précédentes ou suivantes de vos résultats de recherche, ou encore retourner à la liste des résultats.
  • Des hyperliens supplémentaires, tels que Consulter le document ou Consulter sur [nom d’un site web], peuvent apparaître sous un résultat de recherche. Ces liens vous fournissent un accès rapide à la ressource, des liens que vous trouverez également dans la notice bibliographique.
  • Le bouton Résumés vous permet d’activer ou de désactiver l’affichage des résumés dans la liste des résultats de recherche. Toutefois, activer l’affichage des résumés n’aura aucun effet sur les résultats pour lesquels aucun résumé n’est disponible.
  • Diverses options sont fournies pour permettre de contrôler l’ordonnancement les résultats de recherche. L’une d’elles est l’option de tri par Pertinence, qui classe les résultats du plus pertinent au moins pertinent. Le score utilisé à cette fin prend en compte la fréquence des mots ainsi que les champs dans lesquels ils apparaissent. Par exemple, si un terme recherché apparaît fréquemment dans une référence ou est l’un d’un très petit nombre de termes utilisé dans cette référence, cette référence aura probablement un score plus élevé qu’une autre où le terme apparaît moins fréquemment ou qui contient un très grand nombre de mots. De même, le score sera plus élevé si un terme est rare dans l’ensemble de la bibliographie que s’il est très commun. De plus, si un terme de recherche apparaît par exemple dans le titre d’une référence, le score de cette référence sera plus élevé que s’il apparaissait dans un champ moins important tel le résumé.
  • Le tri par Pertinence n’est disponible qu’après avoir soumis des mots-clés par le biais de la section Rechercher.
  • Les catégories sélectionnées dans la section Explorer n’ont aucun effet sur le tri par pertinence. Elles ne font que filtrer la liste des résultats.
Dans les auteurs ou contributeurs
  • "Peng, C."

Résultats 19 ressources

PertinenceDate décroissanteDate croissanteAuteur A-ZAuteur Z-ATitre A-ZTitre Z-A
Résumés
  • Boisvenue, C., Bergeron, Y., Bernier, P., & Peng, C. (2012). Simulations show potential for reduced emissions and carbon stocks increase in boreal forests under ecosystem management. Carbon Management, 3(6), 553–568. https://doi.org/10.4155/cmt.12.57
    Consulter sur www.tandfonline.com
  • Zhou, X., Peng, C., & Dang, Q. (2004). Assessing the generality and accuracy of the TRIPLEX model using in situ data of boreal forests in central Canada. Environmental Modelling & Software, 19(1), 35–46. https://doi.org/10.1016/S1364-8152(03)00108-7
    Consulter sur linkinghub.elsevier.com
  • Xiang, W., Wu, W., Tong, J., Deng, X., Tian, D., Zhang, L., Liu, C., & Peng, C. (2013). Differences in fine root traits between early and late-successional tree species in a Chinese subtropical forest. Forestry, 86(3), 343–351. https://doi.org/10.1093/forestry/cpt003
    Consulter sur academic.oup.com
  • Peng, C. H., Guiot, J., Van Campo, E., & Cheddadi, R. (1995). The Variation of Terrestrial Carbon Storage at 6000 yr BP in Europe: Reconstruction from Pollen Data Using Two Empirical Biosphere Models. Journal of Biogeography, 22(4/5), 863. https://doi.org/10.2307/2845987
    Consulter sur www.jstor.org
  • Peng, C. H., Guiot, J., Van Campo, E., & Cheddadi, R. (1995). Temporal and spatial variations of terrestrial biomes and carbon storage since 13 000 yr BP in Europe: Reconstruction from pollen data and statistical models. Water, Air, and Soil Pollution, 82(1–2), 375–390. https://doi.org/10.1007/BF01182848
    Consulter sur link.springer.com
  • Peng, C. H., Guiot, J., Van Campo, E., & Cheddadi, R. (1994). The Vegetation Carbon Storage Variation in Europe Since 6000 BP: Reconstruction from Pollen. Journal of Biogeography, 21(1), 19. https://doi.org/10.2307/2845601
    Consulter sur www.jstor.org
  • Wu, H., Peng, C., Moore, T. R., Hua, D., Li, C., Zhu, Q., Peichl, M., Arain, M. A., & Guo, Z. (2014). Modeling dissolved organic carbon in temperate forest soils: TRIPLEX-DOC model development and validation. Geoscientific Model Development, 7(3), 867–881. https://doi.org/10.5194/gmd-7-867-2014

    Abstract. Even though dissolved organic carbon (DOC) is the most active carbon (C) cycling in soil organic carbon (SOC) pools, it receives little attention from the global C budget. DOC fluxes are critical to aquatic ecosystem inputs and contribute to the C balance of terrestrial ecosystems, but few ecosystem models have attempted to integrate DOC dynamics into terrestrial C cycling. This study introduces a new process-based model, TRIPLEX-DOC, that is capable of estimating DOC dynamics in forest soils by incorporating both ecological drivers and biogeochemical processes. TRIPLEX-DOC was developed from Forest-DNDC, a biogeochemical model simulating C and nitrogen (N) dynamics, coupled with a new DOC process module that predicts metabolic transformations, sorption/desorption, and DOC leaching in forest soils. The model was validated against field observations of DOC concentrations and fluxes at white pine forest stands located in southern Ontario, Canada. The model was able to simulate seasonal dynamics of DOC concentrations and the magnitudes observed within different soil layers, as well as DOC leaching in the age sequence of these forests. Additionally, TRIPLEX-DOC estimated the effect of forest harvesting on DOC leaching, with a significant increase following harvesting, illustrating that land use change is of critical importance in regulating DOC leaching in temperate forests as an important source of C input to aquatic ecosystems.

    Consulter sur gmd.copernicus.org
  • Price, D. T., Peng, C. H., Apps, M. J., & Halliwell, D. H. (1999). Simulating effects of climate change on boreal ecosystem carbon pools in central Canada. Journal of Biogeography, 26(6), 1237–1248. https://doi.org/10.1046/j.1365-2699.1999.00332.x

    Summary Aim Possible effects of current and future climates on boreal vegetation dynamics and carbon (C) cycling were investigated using the CENTURY 4.0 soil process model and a modified version of the FORSKA2 forest patch model. Location Eleven climate station locations distributed along a transect across the boreal zone of central Canada. Methods Both models were driven by detrended long‐term monthly climate data. Using a climate change signal derived from the GISS general circulation model (GCM) 2×CO 2 equilibrium climate scenario, the output from the two models was then used to compare simulated current and possible future total ecosystem C storage at the climate station locations. Results After allowing for their different underlying structures, comparison of output from both models showed good agreement with local field data under current climate conditions. CENTURY 4.0 was able to reproduce spatial variation in soil and litter C densities satisfactorily but tended to overestimate biomass productivity. FORSKA2 reproduced aboveground biomass productivity and spatially averaged biomass densities relatively well. Under the GISS 2×CO 2 scenario, both models generally predicted small increases in aboveground biomass C density for forest and tundra locations, but CENTURY 4.0 predicted greater decreases in soil and litter pools, for overall decreases in ecosystem C storage in the range 16–19%. Main conclusions With some caveats, results imply that effects of increased precipitation (as simulated by the GISS GCM) would more than compensate for any negative effects of increased temperature on forest growth. Increased temperature would also increase decomposition rates of soil and litter organic matter, however, for a net overall decrease in total ecosystem C storage.

    Consulter sur onlinelibrary.wiley.com
  • Price, D. T., Halliwell, D. H., Apps, M. J., & Peng, C. H. (1999). Adapting a patch model to simulate the sensitivity of Central‐Canadian boreal ecosystems to climate variability. Journal of Biogeography, 26(5), 1101–1113. https://doi.org/10.1046/j.1365-2699.1999.00331.x

    Summary Aim To investigate effects of within‐season and interannual climate variability on the behaviour of boreal forest ecosystems as simulated by the FORSKA2 patch model. Location Eleven climate station locations distributed along a transect across the boreal zone of central Canada. Methods FORSKA2′s water balance submodel was modified to enable it to behave more realistically under a varying climate. Long‐term actual monthly time‐series of temperature and precipitation data were detrended and used to drive the modified model. Long‐term monthly averages of the same detrended data were used to drive the unmodified model. Results Modifications created significant improvements when simulating species composition at sites in boreal Canada. Simulated forest biomass values were slightly higher than those obtained from the unmodified model using averaged climate records, but resembled the observed distribution of vegetation more closely. Main conclusions Modified FORSKA2 suggests that boreal forest composition and distribution may be more sensitive to changes in monthly rainfall data than to changes in temperature. Climate variability affects seasonal water balances and should be considered when using patch models to forecast vegetation dynamics during and following a period of climate transition. The modified model provided improved representation of the latitudinal trend in spatially averaged biomass density in this region.

    Consulter sur onlinelibrary.wiley.com
  • Zhang, L., Deng, X., Lei, X., Xiang, W., Peng, C., Lei, P., & Yan, W. (2012). Determining stem biomass of Pinus massoniana L. through variations in basic density. Forestry, 85(5), 601–609. https://doi.org/10.1093/forestry/cps069
    Consulter sur academic.oup.com
  • Tian, D., Xiang, W., Chen, X., Yan, W., Fang, X., Kang, W., Dan, X., Peng, C., & Peng, Y. (2011). A long-term evaluation of biomass production in first and second rotations of Chinese fir plantations at the same site. Forestry, 84(4), 411–418. https://doi.org/10.1093/forestry/cpr029
    Consulter sur academic.oup.com
  • Cao, X., Jia, J. B., Li, H., Li, M. C., Luo, J., Liang, Z. S., Liu, T. X., Liu, W. G., Peng, C. H., & Luo, Z. B. (2012). Photosynthesis, water use efficiency and stable carbon isotope composition are associated with anatomical properties of leaf and xylem in six poplar species. Plant Biology, 14(4), 612–620. https://doi.org/10.1111/j.1438-8677.2011.00531.x

    Abstract Although fast‐growing Populus species consume a large amount of water for biomass production, there are considerable variations in water use efficiency (WUE) across different poplar species. To compare differences in growth, WUE and anatomical properties of leaf and xylem and to examine the relationship between photosynthesis/WUE and anatomical properties of leaf and xylem, cuttings of six poplar species were grown in a botanical garden. The growth performance, photosynthesis, intrinsic WUE (WUE i ), stable carbon isotope composition (δ 13 C) and anatomical properties of leaf and xylem were analysed in these poplar plants. Significant differences were found in growth, photosynthesis, WUE i and anatomical properties among the examined species. Populus cathayana was the clone with the fastest growth and the lowest WUE i /δ 13 C, whereas P.  ×  euramericana had a considerable growth increment and the highest WUE i /δ 13 C. Among the analysed poplar species, the highest total stomatal density in P. cathayana was correlated with its highest stomatal conductance (g s ) and lowest WUE i /δ 13 C. Moreover, significant correlations were observed between WUE i and abaxial stomatal density and stem vessel lumen area. These data suggest that photosynthesis, WUE i and δ 13 C are associated with leaf and xylem anatomy and there are tradeoffs between growth and WUE i . It is anticipated that some poplar species, e.g. P. × euramericana , are better candidates for water‐limited regions and others, e.g. P. cathayana , may be better for water‐abundant areas.

    Consulter sur onlinelibrary.wiley.com
  • Larocque, G. R., Bhatti, J. S., Gordon, A. M., Luckai, N., Wattenbach, M., Liu, J., Peng, C., Arp, P. A., Liu, S., Zhang, C.-F., Komarov, A., Grabarnik, P., Sun, J., & White, T. (2008). Chapter Eighteen Uncertainty and Sensitivity Issues in Process-based Models of Carbon and Nitrogen Cycles in Terrestrial Ecosystems. In Developments in Integrated Environmental Assessment (Vol. 3, pp. 307–327). Elsevier. https://doi.org/10.1016/S1574-101X(08)00618-2
    Consulter sur linkinghub.elsevier.com
  • Huntzinger, D. N., Schwalm, C., Michalak, A. M., Schaefer, K., King, A. W., Wei, Y., Jacobson, A., Liu, S., Cook, R. B., Post, W. M., Berthier, G., Hayes, D., Huang, M., Ito, A., Lei, H., Lu, C., Mao, J., Peng, C. H., Peng, S., … Zhu, Q. (2013). The North American Carbon Program Multi-scale synthesis and Terrestrial Model Intercomparison Project – Part 1: Overview and experimental design. Biogeosciences. https://doi.org/10.5194/gmdd-6-3977-2013

    Abstract. Terrestrial biosphere models (TBMs) have become an integral tool for extrapolating local observations and understanding of land-atmosphere carbon exchange to larger regions. The North American Carbon Program (NACP) Multi-scale synthesis and Terrestrial Model Intercomparison Project (MsTMIP) is a formal model intercomparison and evaluation effort focused on improving the diagnosis and attribution of carbon exchange at regional and global scales. MsTMIP builds upon current and past synthesis activities, and has a unique framework designed to isolate, interpret, and inform understanding of how model structural differences impact estimates of carbon uptake and release. Here we provide an overview of the MsTMIP effort and describe how the MsTMIP experimental design enables the assessment and quantification of TBM structural uncertainty. Model structure refers to the types of processes considered (e.g. nutrient cycling, disturbance, lateral transport of carbon), and how these processes are represented (e.g. photosynthetic formulation, temperature sensitivity, respiration) in the models. By prescribing a common experimental protocol with standard spin-up procedures and driver data sets, we isolate any biases and variability in TBM estimates of regional and global carbon budgets resulting from differences in the models themselves (i.e. model structure) and model-specific parameter values. An initial intercomparison of model structural differences is represented using hierarchical cluster diagrams (a.k.a. dendrograms), which highlight similarities and differences in how models account for carbon cycle, vegetation, energy, and nitrogen cycle dynamics. We show that, despite the standardized protocol used to derive initial conditions, models show a high degree of variation for GPP, total living biomass, and total soil carbon, underscoring the influence of differences in model structure and parameterization on model estimates.

    Consulter sur gmd.copernicus.org
  • Zhu, Q., Liu, J., Peng, C., Chen, H., Fang, X., Jiang, H., Yang, G., Zhu, D., Wang, W., & Zhou, X. (2014). Modelling methane emissions from natural wetlands by development and application of the TRIPLEX-GHG model. Geoscientific Model Development, 7(3), 981–999. https://doi.org/10.5194/gmd-7-981-2014

    Abstract. A new process-based model TRIPLEX-GHG was developed based on the Integrated Biosphere Simulator (IBIS), coupled with a new methane (CH4) biogeochemistry module (incorporating CH4 production, oxidation, and transportation processes) and a water table module to investigate CH4 emission processes and dynamics that occur in natural wetlands. Sensitivity analysis indicates that the most sensitive parameters to evaluate CH4 emission processes from wetlands are r (defined as the CH4 to CO2 release ratio) and Q10 in the CH4 production process. These two parameters were subsequently calibrated to data obtained from 19 sites collected from approximately 35 studies across different wetlands globally. Being heterogeneously spatially distributed, r ranged from 0.1 to 0.7 with a mean value of 0.23, and the Q10 for CH4 production ranged from 1.6 to 4.5 with a mean value of 2.48. The model performed well when simulating magnitude and capturing temporal patterns in CH4 emissions from natural wetlands. Results suggest that the model is able to be applied to different wetlands under varying conditions and is also applicable for global-scale simulations.

    Consulter sur gmd.copernicus.org
  • Stoy, P. C., Dietze, M. C., Richardson, A. D., Vargas, R., Barr, A. G., Anderson, R. S., Arain, M. A., Baker, I. T., Black, T. A., Chen, J. M., Cook, R. B., Gough, C. M., Grant, R. F., Hollinger, D. Y., Izaurralde, R. C., Kucharik, C. J., Lafleur, P., Law, B. E., Liu, S., … Weng, E. (2013). Evaluating the agreement between measurements and models of net ecosystem exchange at different times and timescales using wavelet coherence: an example using data from the North American Carbon Program Site-Level Interim Synthesis. Biogeosciences, 10(11), 6893–6909. https://doi.org/10.5194/bg-10-6893-2013

    Abstract. Earth system processes exhibit complex patterns across time, as do the models that seek to replicate these processes. Model output may or may not be significantly related to observations at different times and on different frequencies. Conventional model diagnostics provide an aggregate view of model–data agreement, but usually do not identify the time and frequency patterns of model–data disagreement, leaving unclear the steps required to improve model response to environmental drivers that vary on characteristic frequencies. Wavelet coherence can quantify the times and timescales at which two time series, for example time series of models and measurements, are significantly different. We applied wavelet coherence to interpret the predictions of 20 ecosystem models from the North American Carbon Program (NACP) Site-Level Interim Synthesis when confronted with eddy-covariance-measured net ecosystem exchange (NEE) from 10 ecosystems with multiple years of available data. Models were grouped into classes with similar approaches for incorporating phenology, the calculation of NEE, the inclusion of foliar nitrogen (N), and the use of model–data fusion. Models with prescribed, rather than prognostic, phenology often fit NEE observations better on annual to interannual timescales in grassland, wetland and agricultural ecosystems. Models that calculated NEE as net primary productivity (NPP) minus heterotrophic respiration (HR) rather than gross ecosystem productivity (GPP) minus ecosystem respiration (ER) fit better on annual timescales in grassland and wetland ecosystems, but models that calculated NEE as GPP minus ER were superior on monthly to seasonal timescales in two coniferous forests. Models that incorporated foliar nitrogen (N) data were successful at capturing NEE variability on interannual (multiple year) timescales at Howland Forest, Maine. The model that employed a model–data fusion approach often, but not always, resulted in improved fit to data, suggesting that improving model parameterization is important but not the only step for improving model performance. Combined with previous findings, our results suggest that the mechanisms driving daily and annual NEE variability tend to be correctly simulated, but the magnitude of these fluxes is often erroneous, suggesting that model parameterization must be improved. Few NACP models correctly predicted fluxes on seasonal and interannual timescales where spectral energy in NEE observations tends to be low, but where phenological events, multi-year oscillations in climatological drivers, and ecosystem succession are known to be important for determining ecosystem function. Mechanistic improvements to models must be made to replicate observed NEE variability on seasonal and interannual timescales.

    Consulter sur bg.copernicus.org
  • Larocque, G. R., Mailly, D., Yue, T.-X., Anand, M., Peng, C., Kazanci, C., Etterson, M., Goethals, P., Jørgensen, S. E., Schramski, J. R., McIntire, E. J. B., Marceau, D. J., Chen, B., Chen, G. Q., Yang, Z. F., Novotna, B., Luckai, N., Bhatti, J. S., Liu, J., … Ii, J. C. A. (2011). Common challenges for ecological modelling: Synthesis of facilitated discussions held at the symposia organized for the 2009 conference of the International Society for Ecological Modelling in Quebec City, Canada, (October 6–9, 2009). Ecological Modelling, 222(14), 2456–2468. https://doi.org/10.1016/j.ecolmodel.2010.12.017
    Consulter sur linkinghub.elsevier.com
  • Wang, Z., Grant, R. F., Arain, M. A., Bernier, P. Y., Chen, B., Chen, J. M., Govind, A., Guindon, L., Kurz, W. A., Peng, C., Price, D. T., Stinson, G., Sun, J., Trofymowe, J. A., & Yeluripati, J. (2013). Incorporating weather sensitivity in inventory-based estimates of boreal forest productivity: A meta-analysis of process model results. Ecological Modelling, 260, 25–35. https://doi.org/10.1016/j.ecolmodel.2013.03.016
    Consulter sur linkinghub.elsevier.com
  • Ito, A., Li, T., Qin, Z., Melton, J. R., Tian, H., Kleinen, T., Zhang, W., Zhang, Z., Joos, F., Ciais, P., Hopcroft, P. O., Beerling, D. J., Liu, X., Zhuang, Q., Zhu, Q., Peng, C., Chang, K. ‐Y., Fluet‐Chouinard, E., McNicol, G., … Zhu, Q. (2023). Cold‐Season Methane Fluxes Simulated by GCP‐CH4 Models. Geophysical Research Letters, 50(14), e2023GL103037. https://doi.org/10.1029/2023GL103037

    Abstract Cold‐season methane (CH 4 ) emissions may be poorly constrained in wetland models. We examined cold‐season CH 4 emissions simulated by 16 models participating in the Global Carbon Project model intercomparison and analyzed temporal and spatial patterns in simulation results using prescribed inundation data for 2000–2020. Estimated annual CH 4 emissions from northern (>60°N) wetlands averaged 10.0 ± 5.5 Tg CH 4  yr −1 . While summer CH 4 emissions were well simulated compared to in‐situ flux measurement observations, the models underestimated CH 4 during September to May relative to annual total (27 ± 9%, compared to 45% in observations) and substantially in the months with subzero air temperatures (5 ± 5%, compared to 27% in observations). Because of winter warming, nevertheless, the contribution of cold‐season emissions was simulated to increase at 0.4 ± 0.8% decade −1 . Different parameterizations of processes, for example, freezing–thawing and snow insulation, caused conspicuous variability among models, implying the necessity of model refinement. , Plain Language Summary Wetlands in the northern high latitudes are a major source of methane (CH 4 ) to the atmosphere, mainly during the warm season. Previously, models have assumed that cold‐season CH 4 emissions are low, but recent observations suggest high‐latitude wetlands can be substantial sources even in winter. We compared CH 4 emissions simulated by 16 state‐of‐the‐art wetland models, participating in a model intercomparison project with a focus on the cold‐season in northern wetlands. The model simulations indicated that nearly one third of annual emissions were simulated to occur from September to May, and CH 4 emissions to the atmosphere were not negligible even under freezing air temperatures, although the results differed greatly among the models. However, field studies suggest cold‐season emissions account for an even larger fraction of annual emissions. These results highlight the contribution of cold‐season emissions to the annual CH 4 budget, which future climatic warming is expected to affect severely, and they also show that simulations of cold‐season CH 4 emissions from wetlands need to be improved. , Key Points Cold‐season methane (CH 4 ) emissions simulated by 16 Global Carbon Project‐CH 4 wetland models were analyzed Most models underestimate the cold‐season emissions in comparison with observational data Further model improvement by including cold‐season processes is required to reduce the model bias and uncertainty

    Consulter sur agupubs.onlinelibrary.wiley.com
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Flux web personnalisé
Dernière mise à jour depuis la base de données : 25/05/2025 05:00 (UTC)

Explorer

Auteur·e·s

  • Peng, Changhui (19)

Type de ressource

  • Article de revue (17)
  • Chapitre de livre (1)
  • Prépublication (1)

Année de publication

  • Entre 1900 et 1999 (5)
    • Entre 1990 et 1999 (5)
      • 1994 (1)
      • 1995 (2)
      • 1999 (2)
  • Entre 2000 et 2025 (14)
    • Entre 2000 et 2009 (2)
      • 2004 (1)
      • 2008 (1)
    • Entre 2010 et 2019 (11)
      • 2011 (2)
      • 2012 (3)
      • 2013 (4)
      • 2014 (2)
    • Entre 2020 et 2025 (1)
      • 2023 (1)

Explorer

UQAM - Université du Québec à Montréal

  • Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • bibliotheques@uqam.ca

Accessibilité Web