Accéder au contenu Accéder au menu principal Accéder à la recherche
Accéder au contenu Accéder au menu principal
UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
UQAM logo
Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • Bibliographie
  • Accueil
  1. Vitrine des bibliographies
  2. Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  3. Résultats
  • Accueil

Votre recherche

Réinitialiser la recherche

Aide

L’interface de recherche est composée de trois sections : Rechercher, Explorer et Résultats. Celles-ci sont décrites en détail ci-dessous.

Vous pouvez lancer une recherche aussi bien à partir de la section Rechercher qu’à partir de la section Explorer.

Rechercher

Cette section affiche vos critères de recherche courants et vous permet de soumettre des mots-clés à chercher dans la bibliographie.

  • Chaque nouvelle soumission ajoute les mots-clés saisis à la liste des critères de recherche.
  • Pour lancer une nouvelle recherche plutôt qu’ajouter des mots-clés à la recherche courante, utilisez le bouton Réinitialiser la recherche, puis entrez vos mots-clés.
  • Pour remplacer un mot-clé déjà soumis, veuillez d’abord le retirer en décochant sa case à cocher, puis soumettre un nouveau mot-clé.
  • Vous pouvez contrôler la portée de votre recherche en choisissant où chercher. Les options sont :
    • Partout : repère vos mots-clés dans tous les champs des références bibliographiques ainsi que dans le contenu textuel des documents disponibles.
    • Dans les auteurs ou contributeurs : repère vos mots-clés dans les noms d’auteurs ou de contributeurs.
    • Dans les titres : repère vos mots-clés dans les titres.
    • Dans tous les champs : repère vos mots-clés dans tous les champs des notices bibliographiques.
    • Dans les documents : repère vos mots-clés dans le contenu textuel des documents disponibles.
  • Vous pouvez utiliser les opérateurs booléens avec vos mots-clés :
    • ET : repère les références qui contiennent tous les termes fournis. Ceci est la relation par défaut entre les termes séparés d’un espace. Par exemple, a b est équivalent à a ET b.
    • OU : repère les références qui contiennent n’importe lequel des termes fournis. Par exemple, a OU b.
    • SAUF : exclut les références qui contiennent le terme fourni. Par exemple, SAUF a.
    • Les opérateurs booléens doivent être saisis en MAJUSCULES.
  • Vous pouvez faire des groupements logiques (avec les parenthèses) pour éviter les ambiguïtés lors de la combinaison de plusieurs opérateurs booléens. Par exemple, (a OU b) ET c.
  • Vous pouvez demander une séquence exacte de mots (avec les guillemets droits), par exemple "a b c". Par défaut la différence entre les positions des mots est de 1, ce qui signifie qu’une référence sera repérée si elle contient les mots et qu’ils sont consécutifs. Une distance maximale différente peut être fournie (avec le tilde), par exemple "a b"~2 permet jusqu’à un terme entre a et b, ce qui signifie que la séquence a c b pourrait être repérée aussi bien que a b.
  • Vous pouvez préciser que certains termes sont plus importants que d’autres (avec l’accent circonflexe). Par exemple, a^2 b c^0.5 indique que a est deux fois plus important que b dans le calcul de pertinence des résultats, tandis que c est de moitié moins important. Ce type de facteur peut être appliqué à un groupement logique, par exemple (a b)^3 c.
  • La recherche par mots-clés est insensible à la casse et les accents et la ponctuation sont ignorés.
  • Les terminaisons des mots sont amputées pour la plupart des champs, tels le titre, le résumé et les notes. L’amputation des terminaisons vous évite d’avoir à prévoir toutes les formes possibles d’un mot dans vos recherches. Ainsi, les termes municipal, municipale et municipaux, par exemple, donneront tous le même résultat. L’amputation des terminaisons n’est pas appliquée au texte des champs de noms, tels auteurs/contributeurs, éditeur, publication.

Explorer

Cette section vous permet d’explorer les catégories associées aux références.

  • Les catégories peuvent servir à affiner votre recherche. Cochez une catégorie pour l’ajouter à vos critères de recherche. Les résultats seront alors restreints aux références qui sont associées à cette catégorie.
  • Dé-cochez une catégorie pour la retirer de vos critères de recherche et élargir votre recherche.
  • Les nombres affichés à côté des catégories indiquent combien de références sont associées à chaque catégorie considérant les résultats de recherche courants. Ces nombres varieront en fonction de vos critères de recherche, de manière à toujours décrire le jeu de résultats courant. De même, des catégories et des facettes entières pourront disparaître lorsque les résultats de recherche ne contiennent aucune référence leur étant associées.
  • Une icône de flèche () apparaissant à côté d’une catégorie indique que des sous-catégories sont disponibles. Vous pouvez appuyer sur l’icône pour faire afficher la liste de ces catégories plus spécifiques. Par la suite, vous pouvez appuyer à nouveau pour masquer la liste. L’action d’afficher ou de masquer les sous-catégories ne modifie pas vos critères de recherche; ceci vous permet de rapidement explorer l’arborescence des catégories, si désiré.

Résultats

Cette section présente les résultats de recherche. Si aucun critère de recherche n’a été fourni, elle montre toute la bibliographie (jusqu’à 20 références par page).

  • Chaque référence de la liste des résultats est un hyperlien vers sa notice bibliographique complète. À partir de la notice, vous pouvez continuer à explorer les résultats de recherche en naviguant vers les notices précédentes ou suivantes de vos résultats de recherche, ou encore retourner à la liste des résultats.
  • Des hyperliens supplémentaires, tels que Consulter le document ou Consulter sur [nom d’un site web], peuvent apparaître sous un résultat de recherche. Ces liens vous fournissent un accès rapide à la ressource, des liens que vous trouverez également dans la notice bibliographique.
  • Le bouton Résumés vous permet d’activer ou de désactiver l’affichage des résumés dans la liste des résultats de recherche. Toutefois, activer l’affichage des résumés n’aura aucun effet sur les résultats pour lesquels aucun résumé n’est disponible.
  • Diverses options sont fournies pour permettre de contrôler l’ordonnancement les résultats de recherche. L’une d’elles est l’option de tri par Pertinence, qui classe les résultats du plus pertinent au moins pertinent. Le score utilisé à cette fin prend en compte la fréquence des mots ainsi que les champs dans lesquels ils apparaissent. Par exemple, si un terme recherché apparaît fréquemment dans une référence ou est l’un d’un très petit nombre de termes utilisé dans cette référence, cette référence aura probablement un score plus élevé qu’une autre où le terme apparaît moins fréquemment ou qui contient un très grand nombre de mots. De même, le score sera plus élevé si un terme est rare dans l’ensemble de la bibliographie que s’il est très commun. De plus, si un terme de recherche apparaît par exemple dans le titre d’une référence, le score de cette référence sera plus élevé que s’il apparaissait dans un champ moins important tel le résumé.
  • Le tri par Pertinence n’est disponible qu’après avoir soumis des mots-clés par le biais de la section Rechercher.
  • Les catégories sélectionnées dans la section Explorer n’ont aucun effet sur le tri par pertinence. Elles ne font que filtrer la liste des résultats.
Dans les auteurs ou contributeurs
  • "Pausata, Francesco S. R."
Année de publication
  • Entre 2000 et 2025
    • Entre 2010 et 2019

Résultats 28 ressources

PertinenceDate décroissanteDate croissanteAuteur A-ZAuteur Z-ATitre A-ZTitre Z-A
  • 1
  • 2
  • Page 1 de 2
Résumés
  • Pausata, F. S. R. (2015). How Do High-Latitude Volcanic Eruptions Affect Climate? Eos, 96. https://doi.org/10.1029/2015EO025757

    High-Latitude Volcanic Eruption Impacts on Climate: Filling the Gaps; Stockholm, Sweden, 5–7 November 2014

    Consulter sur eos.org
  • Pausata, F. S. R., & Löfverström, M. (2015). On the enigmatic similarity in Greenland δ18 O between the Oldest and Younger Dryas. Geophysical Research Letters, 42(23). https://doi.org/10.1002/2015GL066042

    Abstract The last deglaciation (20.0–10.0 kyr B.P.) was punctuated by two major cooling events affecting the Northern Hemisphere: the Oldest Dryas (OD; 18.0–14.7 kyr B.P.) and the Younger Dryas (YD; 12.8–11.5 kyr B.P.). Greenland ice core δ 18 O temperature reconstructions suggest that the YD was as cold as the OD, despite a 50 ppmv increase in atmospheric CO 2 , while modeling studies suggest that the YD was approximately 4–5°C warmer than the OD. This discrepancy has been surmised to result from changes in the origin of the water vapor delivered to Greenland; however, this hypothesis has not been hitherto tested. Here we use an atmospheric circulation model with an embedded moisture‐tracing module to investigate atmospheric processes that may have been responsible for the similar δ 18 O values during the OD and YD. Our results show that the summer‐to‐winter precipitation ratio over central Greenland in the OD is twice as high as in the YD experiment, which shifts the δ 18 O signal toward warmer (summer) temperatures (enriched δ 18 O values and it accounts for ~45% of the expected YD‐OD δ 18 O difference). A change in the inversion (cloud) temperature relationship between the two climate states further contributes (~20%) to altering the δ 18 O‐temperature‐relation model. Our experiments also show a 7% decrease of δ 18 O‐depleted precipitation from distant regions (e.g., the Pacific Ocean) in the OD, hence further contributing (15–20%) in masking the actual temperature difference. All together, these changes provide a physical explanation for the ostensible similarity in the ice core δ 18 O temperature reconstructions in Greenland during OD and YD. , Key Points Precipitation seasonality and inversion temperature changes behind YD‐OD δ 18 O enigma Local processes changes accounting up to 65% of the expected YD‐OD δ 18 O difference Moisture transport changes from the Pacific accounting only up to 20% of the expected YD‐OD δ 18 O difference

    Consulter sur agupubs.onlinelibrary.wiley.com
  • Pausata, F. S. R., & Camargo, S. J. (2019). Tropical cyclone activity affected by volcanically induced ITCZ shifts. Proceedings of the National Academy of Sciences, 116(16), 7732–7737. https://doi.org/10.1073/pnas.1900777116

    Significance Volcanic eruptions can inject a large amount of aerosol particles, which interact with solar radiation and consequently can affect the climate worldwide, hence the intensity and frequency of extreme events for a few years following the eruption. However, only a handful of studies have investigated the impacts of volcanic eruptions on tropical cyclone activity. Through a set of sensitivity modeling experiments, our study demonstrates that volcanic eruptions by shifting the Intertropical convergence zone can impact tropical cyclone activity up to 4 years following the eruption. These results will prove valuable to society, allowing us to better prepare for the consequences of changes in tropical cyclone activity following large volcanic eruptions. , Volcanic eruptions can affect global climate through changes in atmospheric and ocean circulation, and therefore could impact tropical cyclone (TC) activity. Here, we use ensemble simulations performed with an Earth System Model to investigate the impact of strong volcanic eruptions occurring in the tropical Northern (NH) and Southern (SH) Hemisphere on the large-scale environmental factors that affect TCs. Such eruptions cause a strong asymmetrical hemispheric cooling, either in the NH or SH, which shifts the Intertropical Convergence Zone (ITCZ) southward or northward, respectively. The ITCZ shift and the associated surface temperature anomalies then cause changes to the genesis potential indices and TC potential intensity. The effect of the volcanic eruptions on the ITCZ and hence on TC activity lasts for at least 4 years. Finally, our analysis suggests that volcanic eruptions do not lead to an overall global reduction in TC activity but rather a redistribution following the ITCZ movement. On the other hand, the volcanically induced changes in El Niño-Southern Oscillation (ENSO) or sea-surface temperature do not seem to have a significant impact on TC activity as previously suggested.

    Consulter sur pnas.org
  • Pausata, F. S. R., LeGrande, A., & Roberts, W. (2016). How Will Sea Ice Loss Affect the Greenland Ice Sheet? Eos, 97. https://doi.org/10.1029/2016EO047961

    On the Puzzling Features of Greenland Ice-Core Isotopic Composition; Copenhagen, Denmark, 26–28 October 2015

    Consulter sur eos.org
  • Tierney, J. E., Pausata, F. S. R., & deMenocal, P. (2016). Deglacial Indian monsoon failure and North Atlantic stadials linked by Indian Ocean surface cooling. Nature Geoscience, 9(1), 46–50. https://doi.org/10.1038/ngeo2603
    Consulter sur www.nature.com
  • Pausata, F. S. R., Karamperidou, C., Caballero, R., & Battisti, D. S. (2016). ENSO response to high‐latitude volcanic eruptions in the Northern Hemisphere: The role of the initial conditions. Geophysical Research Letters, 43(16), 8694–8702. https://doi.org/10.1002/2016GL069575

    Abstract A large ensemble of Earth System Model simulations is analyzed to show that high‐latitude Northern Hemisphere eruptions give rise to El Niño‐like anomalies in the winter following the eruption, the amplitude of which depends on the state of the tropical Pacific at the time of the eruption. The El Niño‐like anomalies are almost three times larger when the eruption occurs during an incipient La Niña or during a neutral state compared to an incipient El Niño. The differential response results from stronger atmosphere‐ocean coupling and extra‐tropical feedbacks during an incipient La Niña compared to El Niño. Differences in the response continue through the second and third years following the eruption. When the eruption happens in a year of an incipient El Niño, a large cold (La Niña‐like) anomaly develops in year 2; if the eruption occurs in a year of an incipient La Niña, no anomalies are simulated in year 2 and a La Niña‐like response appears in year 3. After the El Niño‐like anomaly in the first winter, the overall tendency of ENSO in the following 2 years is toward a La Niña state. Our results highlight the high sensitivity of tropical Pacific dynamics under volcanic forcing to the ENSO initial state and lay the groundwork for improved predictions of the global climatic response to high‐latitude volcanic eruptions. , Key Points HL eruptions alter the mean state of ENSO, and detectable anomalies are seen up to 3 years after the eruption Stronger El Niño‐like anomalies on year 1 when eruptions occurs under developing La Niñas La Niña‐like anomalies on year 2 and year 3 when eruptions occurs under developing El Niños and La Niñas, respectively

    Consulter sur agupubs.onlinelibrary.wiley.com
  • Pausata, F. S. R., Chafik, L., Caballero, R., & Battisti, D. S. (2015). Impacts of high-latitude volcanic eruptions on ENSO and AMOC. Proceedings of the National Academy of Sciences, 112(45), 13784–13788. https://doi.org/10.1073/pnas.1509153112

    Significance In the model simulations analyzed here, large high-latitude volcanic eruptions have global and long-lasting effects on climate, altering the spatiotemporal characteristic of the El Niño–Southern Oscillation (ENSO) on both short (<1 y) and long timescales and affecting the strength of the Atlantic Meridional Overturning Circulation (AMOC). In the first 8–9 mo following the start of the eruption, El Niño-like anomalies develop over the equatorial Pacific. The large high-latitude eruptions also trigger a strengthening of the AMOC in the first 25 y after the eruption, which is associated with an increase in ENSO variability. This is then followed by a weakening of the AMOC lasting another 30–35 y, associated with decreased ENSO variability. , Large volcanic eruptions can have major impacts on global climate, affecting both atmospheric and ocean circulation through changes in atmospheric chemical composition and optical properties. The residence time of volcanic aerosol from strong eruptions is roughly 2–3 y. Attention has consequently focused on their short-term impacts, whereas the long-term, ocean-mediated response has not been well studied. Most studies have focused on tropical eruptions; high-latitude eruptions have drawn less attention because their impacts are thought to be merely hemispheric rather than global. No study to date has investigated the long-term effects of high-latitude eruptions. Here, we use a climate model to show that large summer high-latitude eruptions in the Northern Hemisphere cause strong hemispheric cooling, which could induce an El Niño-like anomaly, in the equatorial Pacific during the first 8–9 mo after the start of the eruption. The hemispherically asymmetric cooling shifts the Intertropical Convergence Zone southward, triggering a weakening of the trade winds over the western and central equatorial Pacific that favors the development of an El Niño-like anomaly. In the model used here, the specified high-latitude eruption also leads to a strengthening of the Atlantic Meridional Overturning Circulation (AMOC) in the first 25 y after the eruption, followed by a weakening lasting at least 35 y. The long-lived changes in the AMOC strength also alter the variability of the El Niño–Southern Oscillation (ENSO).

    Consulter sur pnas.org
  • Tierney, J. E., Pausata, F. S. R., & deMenocal, P. B. (2017). Rainfall regimes of the Green Sahara. Science Advances, 3(1), e1601503. https://doi.org/10.1126/sciadv.1601503

    We estimate rainfall during the “Green Sahara” period. , During the “Green Sahara” period (11,000 to 5000 years before the present), the Sahara desert received high amounts of rainfall, supporting diverse vegetation, permanent lakes, and human populations. Our knowledge of rainfall rates and the spatiotemporal extent of wet conditions has suffered from a lack of continuous sedimentary records. We present a quantitative reconstruction of western Saharan precipitation derived from leaf wax isotopes in marine sediments. Our data indicate that the Green Sahara extended to 31°N and likely ended abruptly. We find evidence for a prolonged “pause” in Green Sahara conditions 8000 years ago, coincident with a temporary abandonment of occupational sites by Neolithic humans. The rainfall rates inferred from our data are best explained by strong vegetation and dust feedbacks; without these mechanisms, climate models systematically fail to reproduce the Green Sahara. This study suggests that accurate simulations of future climate change in the Sahara and Sahel will require improvements in our ability to simulate vegetation and dust feedbacks.

    Consulter sur www.science.org
  • Pausata, F. S. R., Battisti, D. S., Nisancioglu, K. H., & Bitz, C. M. (2011). Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event. Nature Geoscience, 4(7), 474–480. https://doi.org/10.1038/ngeo1169
    Consulter sur www.nature.com
  • Muschitiello, F., Pausata, F. S. R., Lea, J. M., Mair, D. W. F., & Wohlfarth, B. (2017). Enhanced ice sheet melting driven by volcanic eruptions during the last deglaciation. Nature Communications, 8(1), 1020. https://doi.org/10.1038/s41467-017-01273-1

    Abstract Volcanic eruptions can impact the mass balance of ice sheets through changes in climate and the radiative properties of the ice. Yet, empirical evidence highlighting the sensitivity of ancient ice sheets to volcanism is scarce. Here we present an exceptionally well-dated annual glacial varve chronology recording the melting history of the Fennoscandian Ice Sheet at the end of the last deglaciation (∼13,200–12,000 years ago). Our data indicate that abrupt ice melting events coincide with volcanogenic aerosol emissions recorded in Greenland ice cores. We suggest that enhanced ice sheet runoff is primarily associated with albedo effects due to deposition of ash sourced from high-latitude volcanic eruptions. Climate and snowpack mass-balance simulations show evidence for enhanced ice sheet runoff under volcanically forced conditions despite atmospheric cooling. The sensitivity of past ice sheets to volcanic ashfall highlights the need for an accurate coupling between atmosphere and ice sheet components in climate models.

    Consulter sur www.nature.com
  • Pausata, F. S. R., Lindvall, J., Ekman, A. M. L., & Svensson, G. (2016). Climate effects of a hypothetical regional nuclear war: Sensitivity to emission duration and particle composition. Earth’s Future, 4(11), 498–511. https://doi.org/10.1002/2016EF000415

    Abstract Here, we use a coupled atmospheric‐ocean‐aerosol model to investigate the plume development and climate effects of the smoke generated by fires following a regional nuclear war between emerging third‐world nuclear powers. We simulate a standard scenario where 5 Tg of black carbon ( BC ) is emitted over 1 day in the upper troposphere–lower stratosphere. However, it is likely that the emissions from the fires ignited by bomb detonations include a substantial amount of particulate organic matter ( POM ) and that they last more than 1 day. We therefore test the sensitivity of the aerosol plume and climate system to the BC / POM ratio (1:3, 1:9) and to the emission length (1 day, 1 week, 1 month). We find that in general, an emission length of 1 month substantially reduces the cooling compared to the 1‐day case, whereas taking into account POM emissions notably increases the cooling and the reduction of precipitation associated with the nuclear war during the first year following the detonation. Accounting for POM emissions increases the particle size in the short‐emission‐length scenarios (1 day/1 week), reducing the residence time of the injected particle. While the initial cooling is more intense when including POM emission, the long‐lasting effects, while still large, may be less extreme compared to the BC ‐only case. Our study highlights that the emission altitude reached by the plume is sensitive to both the particle type emitted by the fires and the emission duration. Consequently, the climate effects of a nuclear war are strongly dependent on these parameters. , Key Points Importance of including OC when simulating nuclear wars Importance of the fire emission length when simulating nuclear wars

    Consulter sur agupubs.onlinelibrary.wiley.com
  • Salih, A. A. M., Zhang, Q., Pausata, F. S. R., & Tjernström, M. (2016). Sources of Sahelian‐Sudan moisture: Insights from a moisture‐tracing atmospheric model. Journal of Geophysical Research: Atmospheres, 121(13), 7819–7832. https://doi.org/10.1002/2015JD024575

    Abstract The summer rainfall across Sahelian‐Sudan is one of the main sources of water for agriculture, human, and animal needs. However, the rainfall is characterized by large interannual variability, which has attracted extensive scientific efforts to understand it. This study attempts to identify the source regions that contribute to the Sahelian‐Sudan moisture budget during July through September. We have used an atmospheric general circulation model with an embedded moisture‐tracing module (Community Atmosphere Model version 3), forced by observed (1979–2013) sea‐surface temperatures. The result suggests that about 40% of the moisture comes with the moisture flow associated with the seasonal migration of the Intertropical Convergence Zone (ITCZ) and originates from Guinea Coast, central Africa, and the Western Sahel. The Mediterranean Sea, Arabian Peninsula, and South Indian Ocean regions account for 10.2%, 8.1%, and 6.4%, respectively. Local evaporation and the rest of the globe supply the region with 20.3% and 13.2%, respectively. We also compared the result from this study to a previous analysis that used the Lagrangian model FLEXPART forced by ERA‐Interim. The two approaches differ when comparing individual regions, but are in better agreement when neighboring regions of similar atmospheric flow features are grouped together. Interannual variability with the rainfall over the region is highly correlated with contributions from regions that are associated with the ITCZ movement, which is in turn linked to the Atlantic Multidecadal Oscillation. Our result is expected to provide insights for the effort on seasonal forecasting of the rainy season over Sahelian Sudan. , Key Points The moisture associated with ITCZ flow accounts for about 40%‐50% of the precipitated water The local evaporation provides about 20% of the precipitated water The multiyear variability in the rainfall seems to be linked to the AMO

    Consulter sur agupubs.onlinelibrary.wiley.com
  • Messori, G., Gaetani, M., Zhang, Q., Zhang, Q., & Pausata, F. S. R. (2019). The water cycle of the mid‐Holocene West African monsoon: The role of vegetation and dust emission changes. International Journal of Climatology, 39(4), 1927–1939. https://doi.org/10.1002/joc.5924

    During the mid‐Holocene (6 kyr BP), West Africa experienced a much stronger and geographically extensive monsoon than in the present day. Changes in orbital forcing, vegetation and dust emissions from the Sahara have been identified as key factors driving this intensification. Here, we analyse how the timing, origin and convergence of moisture fluxes contributing to the monsoonal precipitation change under a range of scenarios: orbital forcing only; orbital and vegetation forcings (Green Sahara); orbital, vegetation and dust forcings (Green Sahara‐reduced dust). We further compare our results to a range of reconstructions of mid‐Holocene precipitation from palaeoclimate archives. In our simulations, the greening of the Sahara leads to a cyclonic water vapour flux anomaly over North Africa with an anomalous westerly flow bringing large amounts of moisture into the Sahel from the Atlantic Ocean. Changes in atmospheric dust under a vegetated Sahara shift the anomalous moisture advection pattern northwards, increasing both moisture convergence and precipitation recycling over the northern Sahel and Sahara and the associated precipitation during the boreal summer. During this season, under both the Green Sahara and Green Sahara‐reduced dust scenarios, local recycling in the Saharan domain exceeds that of the Sahel. This points to local recycling as an important factor modulating vegetation‐precipitation feedbacks and the impact of Saharan dust emissions. Our results also show that temperature and evapotranspiration over the Sahara in the mid‐Holocene are close to Sahelian pre‐industrial values. This suggests that pollen‐based paleoclimate reconstructions of precipitation during the Green Sahara period are likely not biased by possible large evapotranspiration changes in the region.

    Consulter sur rmets.onlinelibrary.wiley.com
  • Gaetani, M., Messori, G., Zhang, Q., Flamant, C., & Pausata, F. S. R. (2017). Understanding the Mechanisms behind the Northward Extension of the West African Monsoon during the Mid-Holocene. Journal of Climate, 30(19), 7621–7642. https://doi.org/10.1175/JCLI-D-16-0299.1

    Abstract Understanding the West African monsoon (WAM) dynamics in the mid-Holocene (MH) is a crucial issue in climate modeling, because numerical models typically fail to reproduce the extensive precipitation suggested by proxy evidence. This discrepancy may be largely due to the assumption of both unrealistic land surface cover and atmospheric aerosol concentration. In this study, the MH environment is simulated in numerical experiments by imposing extensive vegetation over the Sahara and the consequent reduction in airborne dust concentration. A dramatic increase in precipitation is simulated across the whole of West Africa, up to the Mediterranean coast. This precipitation response is in better agreement with proxy data, in comparison with the case in which only changes in orbital forcing are considered. Results show a substantial modification of the monsoonal circulation, characterized by an intensification of large-scale deep convection through the entire Sahara, and a weakening and northward shift (~6.5°) of the African easterly jet. The greening of the Sahara also leads to a substantial reduction in the African easterly wave activity and associated precipitation. The reorganization of the regional atmospheric circulation is driven by the vegetation effect on radiative forcing and associated heat fluxes, with the reduction in dust concentration to enhance this response. The results for the WAM in the MH present important implications for understanding future climate scenarios in the region and in teleconnected areas, in the context of projected wetter conditions in West Africa.

    Consulter sur journals.ametsoc.org
  • Pausata, F. S. R., Grini, A., Caballero, R., Hannachi, A., & Seland, Ø. (2015). High-latitude volcanic eruptions in the Norwegian Earth System Model: the effect of different initial conditions and of the ensemble size. Tellus B: Chemical and Physical Meteorology, 67(1), 26728. https://doi.org/10.3402/tellusb.v67.26728
    Consulter sur b.tellusjournals.se
  • Stager, J. C., Ryves, D. B., Chase, B. M., & Pausata, F. S. R. (2011). Catastrophic Drought in the Afro-Asian Monsoon Region During Heinrich Event 1. Science, 331(6022), 1299–1302. https://doi.org/10.1126/science.1198322

    An extreme megadrought occurred in the Afro-Asian monsoon region during an iceberg melting episode 50,000 years ago. , Between 15,000 and 18,000 years ago, large amounts of ice and meltwater entered the North Atlantic during Heinrich stadial 1. This caused substantial regional cooling, but major climatic impacts also occurred in the tropics. Here, we demonstrate that the height of this stadial, about 16,000 to 17,000 years ago (Heinrich event 1), coincided with one of the most extreme and widespread megadroughts of the past 50,000 years or more in the Afro-Asian monsoon region, with potentially serious consequences for Paleolithic cultures. Late Quaternary tropical drying commonly is attributed to southward drift of the intertropical convergence zone, but the broad geographic range of the Heinrich event 1 megadrought suggests that severe, systemic weakening of Afro-Asian rainfall systems also occurred, probably in response to sea surface cooling.

    Consulter sur www.science.org
  • Weldeab, S., Rühlemann, C., Bookhagen, B., Pausata, F. S. R., & Perez‐Lua, F. M. (2019). Enhanced Himalayan Glacial Melting During YD and H1 Recorded in the Northern Bay of Bengal. Geochemistry, Geophysics, Geosystems, 20(5), 2449–2461. https://doi.org/10.1029/2018GC008065

    Abstract Ocean‐land thermal feedback mechanisms in the Indian Summer Monsoon (ISM) domain are an important but not well understood component of regional climate dynamics. Here we present a δ 18 O record analyzed in the mixed‐layer dwelling planktonic foraminifer Globigerinoides ruber ( sensu stricto ) from the northernmost Bay of Bengal (BoB). The δ 18 O time series provides a spatially integrated measure of monsoonal precipitation and Himalayan meltwater runoff into the northern BoB and reveals two brief episodes of anomalously low δ 18 O values between 16.3±0.4 and 16±0.5 and 12.6±0.4 and 12.3±0.4 thousand years before present. The timing of these events is centered at Heinrich event 1 and the Younger Dryas, well‐known phases of weak northern hemisphere monsoon systems. Numerical climate model experiments, simulating Heinrich event‐like conditions, suggest a surface warming over the monsoon‐dominated Himalaya and foreland in response to ISM weakening. Corroborating the simulation results, our analysis of published moraine exposure ages in the monsoon‐dominated Himalaya indicates enhanced glacier retreats that, considering age model uncertainties, coincide and overlap with the episodes of anomalously low δ 18 O values in the northernmost BoB. Our climate proxy and simulation results provide insights into past regional climate dynamics, suggesting reduced cloud cover, increased solar radiation, and air warming of the Himalaya and foreland areas and, as a result, glacier mass losses in response to weakened ISM. , Plain Language Summary Indian Summer Monsoon rainfall and Himalayan glacier/snow melts constitute the main water source for the densely populated Indian subcontinent. Better understanding of how future climate changes will affect the monsoon rainfall and Himalayan glaciers requires a long climate record. In this study, we create a 13,000‐year‐long climate record that allows us to better understand the response of Indian Summer Monsoon rainfall and Himalayan glaciers to past climate changes. The focus of our study is the time window between 9,000 and 22,000 years ago, an episode where the global climate experienced large and rapid changes. Our sediment record from the northern Bay of Bengal and climate change simulation indicate that during episodes of weak monsoon, the melting of the Himalayan glaciers increases substantially significantly. This is because the weakening of the monsoon results in less cloud cover and, as a result, the surface receives more sunlight and causes glacier melting. , Key Points Core sediments from the northern Bay of Bengal are a viable archive to reconstruct past changes in monsoonal and Himalayan meltwater runoff Weak monsoon reduces cloud cover and leads to increased radiative flux over the Himalaya and foreland areas and causes glacier mass loss A spatially integrated record of monsoon and Himalayan climate provides insights into regional climate dynamics

    Consulter sur agupubs.onlinelibrary.wiley.com
  • Maldonado, T., Rutgersson, A., Caballero, R., Pausata, F. S. R., Alfaro, E., & Amador, J. (2017). The role of the meridional sea surface temperature gradient in controlling the Caribbean low‐level jet. Journal of Geophysical Research: Atmospheres, 122(11), 5903–5916. https://doi.org/10.1002/2016JD026025

    Abstract The Caribbean low‐level jet (CLLJ) is an important modulator of regional climate, especially precipitation, in the Caribbean and Central America. Previous work has inferred, due to their semiannual cycle, an association between CLLJ strength and meridional sea surface temperature (SST) gradients in the Caribbean Sea, suggesting that the SST gradients may control the intensity and vertical shear of the CLLJ. In addition, both the horizontal and vertical structure of the jet have been related to topographic effects via interaction with the mountains in Northern South America (NSA), including funneling effects and changes in the meridional geopotential gradient. Here we test these hypotheses, using an atmospheric general circulation model to perform a set of sensitivity experiments to examine the impact of both SST gradients and topography on the CLLJ. In one sensitivity experiment, we remove the meridional SST gradient over the Caribbean Sea and in the other, we flatten the mountains over NSA. Our results show that the SST gradient and topography have little or no impact on the jet intensity, vertical, and horizontal wind shears, contrary to previous works. However, our findings do not discount a possible one‐way coupling between the SST and the wind over the Caribbean Sea through friction force. We also examined an alternative approach based on barotropic instability to understand the CLLJ intensity, vertical, and horizontal wind shears. Our results show that the current hypothesis about the CLLJ must be reviewed in order to fully understand the atmospheric dynamics governing the Caribbean region. , Key Points Atmospheric dynamics in the Caribbean SST over the Caribbean Sea is examined as kinetic energy source for the CLLJ Impact of meridional SST gradient on the vertical structure of CLLJ

    Consulter sur agupubs.onlinelibrary.wiley.com
  • Messori, G., Davini, P., Alvarez-Castro, M. C., Pausata, F. S. R., Yiou, P., & Caballero, R. (2019). On the low-frequency variability of wintertime Euro-Atlantic planetary wave-breaking. Climate Dynamics, 52(3–4), 2431–2450. https://doi.org/10.1007/s00382-018-4373-2
    Consulter sur link.springer.com
  • Pausata, F. S. R., Zhang, Q., Muschitiello, F., Lu, Z., Chafik, L., Niedermeyer, E. M., Stager, J. C., Cobb, K. M., & Liu, Z. (2017). Greening of the Sahara suppressed ENSO activity during the mid-Holocene. Nature Communications, 8(1), 16020. https://doi.org/10.1038/ncomms16020

    Abstract The evolution of the El Niño-Southern Oscillation (ENSO) during the Holocene remains uncertain. In particular, a host of new paleoclimate records suggest that ENSO internal variability or other external forcings may have dwarfed the fairly modest ENSO response to precessional insolation changes simulated in climate models. Here, using fully coupled ocean-atmosphere model simulations, we show that accounting for a vegetated and less dusty Sahara during the mid-Holocene relative to preindustrial climate can reduce ENSO variability by 25%, more than twice the decrease obtained using orbital forcing alone. We identify changes in tropical Atlantic mean state and variability caused by the momentous strengthening of the West Africa Monsoon (WAM) as critical factors in amplifying ENSO’s response to insolation forcing through changes in the Walker circulation. Our results thus suggest that potential changes in the WAM due to anthropogenic warming may influence ENSO variability in the future as well.

    Consulter sur www.nature.com
  • 1
  • 2
  • Page 1 de 2
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Flux web personnalisé
Dernière mise à jour depuis la base de données : 25/05/2025 05:00 (UTC)

Explorer

Auteur·e·s

  • Pausata, Francesco S.R. (28)

Type de ressource

  • Article de revue (28)

Année de publication

  • Entre 2000 et 2025
    • Entre 2010 et 2019
      • 2011 (2)
      • 2015 (5)
      • 2016 (6)
      • 2017 (9)
      • 2019 (6)

Explorer

UQAM - Université du Québec à Montréal

  • Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • bibliotheques@uqam.ca

Accessibilité Web