Votre recherche
Résultats 4 ressources
-
Abstract Increased availability of soil phosphorus (P) has recently been recognised as an underlying driving factor for the positive relationship between plant diversity and ecosystem function. The effects of plant diversity on the bioavailable forms of P involved in biologically mediated rhizospheric processes and how the link between plant and soil microbial diversity facilitates soil P bioavailability, however, remain poorly understood. This study quantified four forms of bioavailable P (CaCl 2 ‐P, citric‐P, enzyme‐P and HCl‐P) in mature subtropical forests using a novel biologically based approach, which emulates how rhizospheric processes influence the release and supply of available P. Soil microbial diversity was measured by Illumina high‐throughput sequencing. Our results suggest that tree species richness significantly affects soil microbial diversity ( p < 0.05), increases litter decomposition, fine‐root biomass and length and soil organic carbon and thus increases the four forms of bioavailable P. A structural equation model that links plants, soil microbes and P forms indicated that soil bacterial and fungal diversity play dominant roles in mediating the effects of tree species richness on soil P bioavailability. An increase in the biodiversity of plants, soil bacteria and fungi could maintain soil P bioavailability and alleviate soil P limitations. Our results imply that biodiversity strengthens plant and soil feedback and increases P recycling. A plain language summary is available for this article.
-
Abstract Forest productivity may be determined not only by biodiversity but also by environmental factors and stand structure attributes. However, the relative importance of these factors in determining productivity is still controversial for subtropical forests. Based on a large dataset from 600 permanent forest inventory plots across subtropical China, we examined the relationship between biodiversity and forest productivity and tested whether stand structural attributes (stand density in terms of trees per ha, age and tree size) and environmental factors (climate and site conditions) had larger effects on productivity. Furthermore, we quantified the relative importance of environmental factors, stand structure and diversity in determining forest productivity. Diversity, together with stand structure and site conditions, regulated the variability in forest productivity. The relationship between diversity and forest productivity did not vary along environmental gradients. Stand density and age were more important modulators of forest productivity than diversity. Synthesis . Diversity had significant and positive effects on productivity in species‐rich subtropical forests, but the effects of stand density and age were also important. Our work highlights that while biodiversity conservation is often important, the regulation of stand structure can be even more important to maintain high productivity in subtropical forests.