Votre recherche
Résultats 3 ressources
-
Winter storms produce major problems for society, and the key responsible factor is often the varying types of precipitation. The objective of this study is to better understand the formation of different types of winter precipitation (freezing rain, ice pellets, snow, slush, wet snow and refrozen wet snow) within the varying and interacting environmental conditions in many winter storms. To address this issue, a one‐dimensional cloud model utilizing a double‐moment bulk microphysics scheme has been developed. Temperature and moisture profiles favorable for the formation of different winter precipitation types were varied in a systematic manner in an environment where snow is falling continuously through a temperature inversion. The ensuing precipitation evolved as a result of the variations in atmospheric temperature and moisture arising from phase changes such as melting and freezing. This study underlines the often complex manner through which different precipitation types form. It also demonstrates that the formation of semimelted particles can have a profound effect on the evolution of precipitation types aloft and at the surface. Furthermore, some types of precipitation only form within a narrow range of environmental conditions.
-
Abstract In mountains, the precipitation phase greatly varies in space and time and affects the evolution of the snow cover. Snowpack models usually rely on precipitation‐phase partitioning methods (PPMs) that use near‐surface variables. These PPMs ignore conditions above the surface thus limiting their ability to predict the precipitation phase at the surface. In this study, the impact on snowpack simulations of atmospheric‐based PPMs, incorporating upper atmospheric information, is tested using the snowpack scheme Crocus. Crocus is run at 2.5‐km grid spacing over the mountains of southwestern Canada and northwestern United States and is driven by meteorological fields from an atmospheric model at the same resolution. Two atmospheric‐based PPMs were considered from the atmospheric model: the output from a detailed microphysics scheme and a post‐processing algorithm determining the snow level and the associated precipitation phase. Two ground‐based PPMs were also included as lower and upper benchmarks: a single air temperature threshold at 0°C and a PPM using wet‐bulb temperature. Compared to the upper benchmark, the snow‐level based PPM improved the estimation of snowfall occurrence by 5% and the simulation of snow water equivalent (SWE) by 9% during the snow melting season. In contrast, due to missing processes, the microphysics scheme decreased performances in phase estimate and SWE simulations compared to the upper benchmark. These results highlight the need for detailed evaluation of the precipitation phase from atmospheric models and the benefit for mountain snow hydrology of the post‐processed snow level. The limitations to drive snowpack models at slope scale are also discussed. , Plain Language Summary The partitioning of precipitation between rainfall and snowfall is a crucial component of the evolution of the snowpack in mountains. Most snowpack models use the air temperature and humidity near the surface to derive the precipitation phase. However, the phase at the surface is strongly influenced by processes such as melting and refreezing of falling hydrometeors that occur above the surface. Atmospheric models simulate these processes and the corresponding phase at the surface. However, snowpack models rarely use this information. In this study, we considered two estimates of precipitation phase from an atmospheric model and tested them with a physically‐based snow model over the mountains of southwestern Canada and northwestern United States. The results were compared with traditional approaches using the air temperature and humidity near the surface to derive the precipitation phase. Our results showed that the precipitation phase associated with the snow level obtained from the atmospheric model improved snowfall estimate and snowpack prediction compared to the traditional approaches. In contrast, the cloud/precipitation scheme of the atmospheric model decreased performance in phase estimate and snow simulations due to missing physical processes. Our study highlights that snowpack predictions in the mountains can be improved if valuable information is obtained from atmospheric models. , Key Points Estimates of precipitation phase from an atmospheric model were used to drive snow simulations with a detailed snowpack model Snowfall prediction and snowpack modeling are improved by using the snow level from post‐processing of the atmospheric model Direct precipitation phase from the microphysics scheme does not improve snow simulations compared to simpler rain‐snow partitioning schemes