Votre recherche
Résultats 2 ressources
-
Abstract The role and impact that boundary layer and shallow cumulus clouds have on the medium-range forecast of a large-scale weather system is discussed in this study. A mesoscale version of the Global Environmental Multiscale (GEM) atmospheric model is used to produce a 5-day numerical forecast of a midlatitude large-scale weather system that occurred over the Pacific Ocean during February 2003. In this version of GEM, four different schemes are used to represent (i) boundary layer clouds (including stratus, stratocumulus, and small cumulus clouds), (ii) shallow cumulus clouds (overshooting cumulus), (iii) deep convection, and (iv) nonconvective clouds. Two of these schemes, that is, the so-called MoisTKE and Kuo Transient schemes for boundary layer and overshooting cumulus clouds, respectively, have been recently introduced in GEM and are described in more detail. The results show that GEM, with this new cloud package, is able to represent the wide variety of clouds observed in association with the large-scale weather system. In particular, it is found that the Kuo Transient scheme is mostly responsible for the shallow/intermediate cumulus clouds in the rear portion of the large-scale system, whereas MoisTKE produces the low-level stratocumulus clouds ahead of the system. Several diagnostics for the rear portion of the system reveal that the role of MoisTKE is mainly to increase the vertical transport (diffusion) associated with the boundary layer clouds, while Kuo Transient is acting in a manner more consistent with convective stabilization. As a consequence, MoisTKE is not able to remove the low-level shallow cloud layer that is incorrectly produced by the GEM nonconvective condensation scheme. Kuo Transient, in contrast, led to a significant reduction of these nonconvective clouds, in better agreement with satellite observations. This improved representation of stratocumulus and cumulus clouds does not have a large impact on the overall sea level pressure patterns of the large-scale weather system. Precipitation in the rear portion of the system, however, is found to be smoother when MoisTKE is used, and significantly less when the Kuo Transient scheme is switched on.
-
Abstract Accurate forecasting of precipitation phase and intensity was critical information for many of the Olympic venue managers during the Vancouver 2010 Olympic and Paralympic Winter Games. Precipitation forecasting was complicated because of the complex terrain and warm coastal weather conditions in the Whistler area of British Columbia, Canada. The goal of this study is to analyze the processes impacting precipitation phase and intensity during a winter weather storm associated with rain and snow over complex terrain. The storm occurred during the second day of the Olympics when the downhill ski event was scheduled. At 0000 UTC 14 February, 2 h after the onset of precipitation, a rapid cooling was observed at the surface instrumentation sites. Precipitation was reported for 8 h, which coincided with the creation of a nearly 0°C isothermal layer, as well as a shift of the valley flow from up valley to down valley. Widespread snow was reported on Whistler Mountain with periods of rain at the mountain base despite the expectation derived from synoptic-scale models (15-km grid spacing) that the strong warm advection would maintain temperatures above freezing. Various model predictions are compared with observations, and the processes influencing the temperature, wind, and precipitation types are discussed. Overall, this case study provided a well-observed scenario of winter storms associated with rain and snow over complex terrain.