Votre recherche
Résultats 5 ressources
-
Abstract Lightning climate change projections show large uncertainties caused by limited empirical knowledge and strong assumptions inherent to coarse-grid climate modeling. This study addresses the latter issue by implementing and applying the lightning potential index parameterization (LPI) into a fine-grid convection-permitting regional climate model (CPM). This setup takes advantage of the explicit representation of deep convection in CPMs and allows for process-oriented LPI inputs such as vertical velocity within convective cells and coexistence of microphysical hydrometeor types, which are known to contribute to charge separation mechanisms. The LPI output is compared to output from a simpler flash rate parameterization, namely the CAPE $$\times$$ × PREC parameterization, applied in a non-CPM on a coarser grid. The LPI’s implementation into the regional climate model COSMO-CLM successfully reproduces the observed lightning climatology, including its latitudinal gradient, its daily and hourly probability distributions, and its diurnal and annual cycles. Besides, the simulated temperature dependence of lightning reflects the observed dependency. The LPI outperforms the CAPE $$\times$$ × PREC parameterization in all applied diagnostics. Based on this satisfactory evaluation, we used the LPI to a climate change projection under the RCP8.5 scenario. For the domain under investigation centered over Germany, the LPI projects a decrease of $$4.8\%$$ 4.8 % in flash rate by the end of the century, in opposition to a projected increase of $$17.4\%$$ 17.4 % as projected using the CAPE $$\times$$ × PREC parameterization. The future decrease of LPI occurs mostly during the summer afternoons and is related to (i) a change in convection occurrence and (ii) changes in the microphysical mixing. The two parameterizations differ because of different convection occurrences in the CPM and non-CPM and because of changes in the microphysical mixing, which is only represented in the LPI lightning parameterization.
-
Abstract In spring 2011, an unprecedented flood hit the complex eastern United States (U.S.)–Canada transboundary Lake Champlain–Richelieu River (LCRR) Basin, destructing properties and inducing negative impacts on agriculture and fish habitats. The damages, covered by the Governments of Canada and the U.S., were estimated to C$90M. This natural disaster motivated the study of mitigation measures to prevent such disasters from reoccurring. When evaluating flood risks, long‐term evolving climate change should be taken into account to adopt mitigation measures that will remain relevant in the future. To assess the impacts of climate change on flood risks of the LCRR basin, three bias‐corrected multi‐resolution ensembles of climate projections for two greenhouse gas concentration scenarios were used to force a state‐of‐the‐art, high‐resolution, distributed hydrological model. The analysis of the hydrological simulations indicates that the 20‐year return period flood (corresponding to a medium flood) should decrease between 8% and 35% for the end of the 21st Century (2070–2099) time horizon and for the high‐emission scenario representative concentration pathway (RCP) 8.5. The reduction in flood risks is explained by a decrease in snow accumulation and an increase in evapotranspiration expected with the future warming of the region. Nevertheless, due to the large climate inter‐annual variability, short‐term flood probabilities should remain similar to those experienced in the recent past.
-
Abstract Approximately 10 years ago, convection‐permitting regional climate models (CPRCMs) emerged as a promising computationally affordable tool to produce fine resolution (1–4 km) decadal‐long climate simulations with explicitly resolved deep convection. This explicit representation is expected to reduce climate projection uncertainty related to deep convection parameterizations found in most climate models. A recent surge in CPRCM decadal simulations over larger domains, sometimes covering continents, has led to important insights into CPRCM advantages and limitations. Furthermore, new observational gridded datasets with fine spatial and temporal (~1 km; ~1 h) resolutions have leveraged additional knowledge through evaluations of the added value of CPRCMs. With an improved coordination in the frame of ongoing international initiatives, the production of ensembles of CPRCM simulations is expected to provide more robust climate projections and a better identification of their associated uncertainties. This review paper presents an overview of the methodology to produce CPRCM simulations and the latest research on the related added value in current and future climates. Impact studies that are already taking advantage of these new CPRCM simulations are highlighted. This review paper ends by proposing next steps that could be accomplished to continue exploiting the full potential of CPRCMs. This article is categorized under: Climate Models and Modeling > Earth System Models