Votre recherche
Résultats 2 ressources
-
Abstract Climate simulations made with two regional climate models (RCMs), the French Aire Limitée Adaptation Dynamique Développement International (ALADIN) and the Canadian Regional Climate Model, version 5 (CRCM5), operating on 10-km meshes for the period 1989–2011, and the Hydro-Québec hydrological model (HSAMI), are used to reconstruct the spring 2011 Richelieu River flood in the southern region of the province of Québec, Canada. The analysis shows that the simulated fields of 2-m air temperature, precipitation, and snow water equivalent by the RCMs closely match the observations with similar multiyear means and a high correlation of the monthly anomalies. The climatic conditions responsible for the 2011 flood are generally well simulated by the RCMs. The use of multidecadal RCM simulations facilitates the identification of anomalies that contributed to the flood. The flood was linked to a combination of factors: the 2010/11 winter was cold and snowy, the snowmelt in spring was fast, and there was a record amount of precipitation in April and May. Driven by outputs from the RCMs, HSAMI was able to reproduce the mean hydrograph of the Richelieu River, but it underestimated the peak of the 2011 flood. HSAMI adequately computes the water transport from the mountains to the river mouth and the storage effect of Lake Champlain, which dampens the flood over a long period. Overall, the results suggest that RCM simulations can be useful for reconstructing high-resolution climate information and providing new variables that can help better understand the causes of extreme climatic events.
-
Abstract Bias correction of climate model outputs has emerged as a standard procedure in most recent climate change impact studies. A crucial assumption of all bias correction approaches is that climate model biases are constant over time. The validity of this assumption has important implications for impact studies and needs to be verified to properly address uncertainty in future climate projections. Using 10 climate model simulations, this study specifically tests the bias stationarity of climate model outputs over Canada and the contiguous United States (U.S.) by comparing model outputs with corresponding observations over two 20 year historical periods (1961–1980 and 1981–2000). The results show that precipitation biases are clearly nonstationary over much of Canada and the contiguous U.S. and where they vary over much shorter time scales than those normally considered in climate change impact studies. In particular, the difference in biases over two very close periods of the recent past are, in fact, comparable to the climate change signal between future (2061–2080) and historical (1961–1980) periods for precipitation over large parts of Canada and the contiguous U.S., indicating that the uncertainty of future impacts may have been underestimated in most impact studies. In comparison, temperature bias can be considered to be approximately stationary for most of Canada and the contiguous U.S. when compared with the magnitude of the climate change signal. Given the reality that precipitation is usually considered to be more important than temperature for many impact studies, it is advisable that natural climate variability and climate model sensitivity be better emphasized in future impact studies. , Key Points Climate model biases are nonstationary over much of North America The difference in biases is comparable to the climate change signal The uncertainty of impacts may have been underestimated in most impact studies