Votre recherche
Résultats 4 ressources
-
Abstract To retain the sequence of events of a regional climate model (RCM) simulation driven by a reanalysis, a method that has not been widely adopted uses an RCM with frequent reinitializations toward its driving field. In this regard, this study highlights the benefits of an RCM simulation with frequent (daily) reinitializations compared to a standard continuous RCM simulation. Both simulations are carried out with the RCM HIRHAM5, driven with the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim) data, over the 12-km-resolution European Coordinated Regional Climate Downscaling Experiment (CORDEX) domain covering the period 1989–2009. The analysis of daily precipitation shows improvements in the sequence of events and the maintenance of the added value from the standard continuous RCM simulation. The validation of the two RCM simulations with observations reveals that the simulation with reinitializations indeed improves the temporal correlation. Furthermore, the RCM simulation with reinitializations has lower systematic errors compared to the continuous simulation, which has a tendency to be too wet. A comparison of the distribution of wet day precipitation intensities shows similar added value in the continuous and reinitialized simulations with higher variability and extremes compared to the driving field ERA-Interim. Overall, the results suggest that the finescale climate dataset of the RCM simulation with reinitializations better suits the needs of impact studies by providing a sequence of events matching closely the observations, while limiting systematic errors and generating reliable added value. Downsides of the method with reinitializations are increased computational costs and the introduction of temporal discontinuities that are similar to those of a reanalysis.
-
Abstract A method to assess firn compaction using data collected with the Airborne SAR (Synthetic Aperture Radar)/Interferometric Radar Altimeter System (ASIRAS) is developed. For this, we develop a dynamical firn-compaction model that includes meltwater retention. Based on the ASIRAS data, which show internal layers as annual horizons in the uppermost firn, the method relies on inferring the age/ depth (internal layers) information from the radar data using a Monte Carlo inversion technique to tune in parallel both the firn model and the atmospheric forcing parameters (temperature and accumulation). The model is validated against two firn cores, and it is shown that applying both firn densities and age/ depth information for the inversion gives the most accurate understanding of model biases. The method is then applied to a 67 km section of the EGIG line forced by atmospheric output from a regional climate model using only age/depth information in the inversion step. The layers traced by the ASIRAS data are modeled with a root-mean-square error of 9 cm, which is within the estimated error of the layer tracing. This gives us confidence in applying observed annual layering from firn radar data to assess firn compaction; however, the study also indicates that our firn-model-tuning parameters are site-dependent and cannot be parameterized by temperature and accumulation alone.