Votre recherche
Résultats 38 ressources
-
Abstract Climate simulations made with two regional climate models (RCMs), the French Aire Limitée Adaptation Dynamique Développement International (ALADIN) and the Canadian Regional Climate Model, version 5 (CRCM5), operating on 10-km meshes for the period 1989–2011, and the Hydro-Québec hydrological model (HSAMI), are used to reconstruct the spring 2011 Richelieu River flood in the southern region of the province of Québec, Canada. The analysis shows that the simulated fields of 2-m air temperature, precipitation, and snow water equivalent by the RCMs closely match the observations with similar multiyear means and a high correlation of the monthly anomalies. The climatic conditions responsible for the 2011 flood are generally well simulated by the RCMs. The use of multidecadal RCM simulations facilitates the identification of anomalies that contributed to the flood. The flood was linked to a combination of factors: the 2010/11 winter was cold and snowy, the snowmelt in spring was fast, and there was a record amount of precipitation in April and May. Driven by outputs from the RCMs, HSAMI was able to reproduce the mean hydrograph of the Richelieu River, but it underestimated the peak of the 2011 flood. HSAMI adequately computes the water transport from the mountains to the river mouth and the storage effect of Lake Champlain, which dampens the flood over a long period. Overall, the results suggest that RCM simulations can be useful for reconstructing high-resolution climate information and providing new variables that can help better understand the causes of extreme climatic events.
-
Abstract Bias correction of climate model outputs has emerged as a standard procedure in most recent climate change impact studies. A crucial assumption of all bias correction approaches is that climate model biases are constant over time. The validity of this assumption has important implications for impact studies and needs to be verified to properly address uncertainty in future climate projections. Using 10 climate model simulations, this study specifically tests the bias stationarity of climate model outputs over Canada and the contiguous United States (U.S.) by comparing model outputs with corresponding observations over two 20 year historical periods (1961–1980 and 1981–2000). The results show that precipitation biases are clearly nonstationary over much of Canada and the contiguous U.S. and where they vary over much shorter time scales than those normally considered in climate change impact studies. In particular, the difference in biases over two very close periods of the recent past are, in fact, comparable to the climate change signal between future (2061–2080) and historical (1961–1980) periods for precipitation over large parts of Canada and the contiguous U.S., indicating that the uncertainty of future impacts may have been underestimated in most impact studies. In comparison, temperature bias can be considered to be approximately stationary for most of Canada and the contiguous U.S. when compared with the magnitude of the climate change signal. Given the reality that precipitation is usually considered to be more important than temperature for many impact studies, it is advisable that natural climate variability and climate model sensitivity be better emphasized in future impact studies. , Key Points Climate model biases are nonstationary over much of North America The difference in biases is comparable to the climate change signal The uncertainty of impacts may have been underestimated in most impact studies
-
Abstract Precipitation forcing is critical for hydrological modeling as it has a strong impact on the accuracy of simulated river flows. In general, precipitation data used in hydrological modeling are provided by weather stations. However, in regions with sparse weather station coverage, the spatial interpolation of the individual weather stations provides a rough approximation of the real precipitation fields. In such regions, precipitation from interpolated weather stations is generally considered unreliable for hydrological modeling. Precipitation estimates from reanalyses could represent an interesting alternative in regions where the weather station density is low. This article compares the performances of river flows simulated by a watershed model using precipitation and temperature estimates from reanalyses and gridded observations. The comparison was carried out based on the density of surface weather stations for 316 Canadian watersheds located in three climatic regions. Three state-of-the-art atmospheric reanalyses—ERA-Interim, CFSR, and MERRA—and one gridded observations database over Canada—Natural Resources Canada (NRCan)—were used. Results showed that the Nash–Sutcliffe values of simulated river flows using precipitation and temperature data from CFSR and NRCan were generally equivalent regardless of the weather station density. ERA-Interim and MERRA performed significantly better than NRCan for watersheds with weather station densities of less than 1 station per 1000 km2 in the mountainous region. Overall, these results indicate that for hydrological modeling in regions with high spatial variability of precipitation such as mountainous regions, reanalyses perform better than gridded observations when the weather station density is low.
-
Abstract. A simplified hydroclimatic modelling workflow is proposed to quantify the impact of climate change on water discharge without resorting to meteorological observations. This alternative approach is designed by combining asynchronous hydroclimatic modelling and quantile perturbation applied to streamflow observations. Calibration is run by forcing hydrologic models with raw climate model outputs using an objective function that excludes the day-to-day temporal correlation between simulated and observed hydrographs. The resulting hydrologic scenarios provide useful and reliable information considering that they (1) preserve trends and physical consistency between simulated climate variables, (2) are implemented from a modelling cascade despite observation scarcity, and (3) support the participation of end-users in producing and interpreting climate change impacts on water resources. The proposed modelling workflow is implemented over four sub-catchments of the Chaudière River, Canada, using nine North American Coordinated Regional Climate Downscaling Experiment (NA-CORDEX) simulations and a pool of lumped conceptual hydrologic models. Results confirm that the proposed workflow produces equivalent projections of the seasonal mean flows in comparison to a conventional hydroclimatic modelling approach. They also highlight the sensibility of the proposed workflow to strong biases affecting raw climate model outputs, frequently causing outlying projections of the hydrologic regime. Inappropriate forcing climate simulations were however successfully identified (and excluded) using the performance of the simulated hydrologic response as a ranking criterion. Results finally suggest that further works should be conducted to confirm the reliability of the proposed workflow to assess the impact of climate change on high- and low-flow events.
-
Abstract The present work introduces a new and useful tool to quantify the lateral boundary forcing of a regional climate model (RCM). This tool, an aging tracer, computes the time the air parcels spend inside the limited-area domain of an RCM. The aging tracers are initialized to zero when the air parcels enter the domain and grow older during their migrations through the domain with each time step in the integration of the model. This technique was employed in a 10-member ensemble of 10-yr (1980–89) simulations with the Canadian RCM on a large domain covering North America. The residency time is treated and archived as the other simulated meteorological variables, therefore allowing computation of its climate diagnostics. These diagnostics show that the domain-averaged residency time is shorter in winter than in summer as a result of the faster winter atmospheric circulation. The residency time decreases with increasing height above the surface because of the faster atmospheric circulation at high levels dominated by the jet stream. Within the domain, the residency time increases from west to east according to the transportation of the aging tracer with the westerly general atmospheric circulation. A linear relation is found between the spatial distribution of the internal variability—computed with the variance between the ensemble members—and residency time. This relation indicates that the residency time can be used as a quantitative indicator to estimate the level of control exerted by the lateral boundary conditions on the RCM simulations.
-
Abstract To retain the sequence of events of a regional climate model (RCM) simulation driven by a reanalysis, a method that has not been widely adopted uses an RCM with frequent reinitializations toward its driving field. In this regard, this study highlights the benefits of an RCM simulation with frequent (daily) reinitializations compared to a standard continuous RCM simulation. Both simulations are carried out with the RCM HIRHAM5, driven with the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim) data, over the 12-km-resolution European Coordinated Regional Climate Downscaling Experiment (CORDEX) domain covering the period 1989–2009. The analysis of daily precipitation shows improvements in the sequence of events and the maintenance of the added value from the standard continuous RCM simulation. The validation of the two RCM simulations with observations reveals that the simulation with reinitializations indeed improves the temporal correlation. Furthermore, the RCM simulation with reinitializations has lower systematic errors compared to the continuous simulation, which has a tendency to be too wet. A comparison of the distribution of wet day precipitation intensities shows similar added value in the continuous and reinitialized simulations with higher variability and extremes compared to the driving field ERA-Interim. Overall, the results suggest that the finescale climate dataset of the RCM simulation with reinitializations better suits the needs of impact studies by providing a sequence of events matching closely the observations, while limiting systematic errors and generating reliable added value. Downsides of the method with reinitializations are increased computational costs and the introduction of temporal discontinuities that are similar to those of a reanalysis.
-
Within the framework of the European project ENSEMBLES (ensembles‐based predictions of climate changes and their impacts) we explore the systematic bias in simulated monthly mean temperature and precipitation for an ensemble of thirteen regional climate models (RCMs). The models have been forced with the European Centre for Medium Range Weather Forecasting Reanalysis (ERA40) and are compared to a new high resolution gridded observational data set. We find that each model has a distinct systematic bias relating both temperature and precipitation bias to the observed mean. By excluding the twenty‐five percent warmest and wettest months, respectively, we find that a derived second‐order fit from the remaining months can be used to estimate the values of the excluded months. We demonstrate that the common assumption of bias cancellation (invariance) in climate change projections can have significant limitations when temperatures in the warmest months exceed 4–6 °C above present day conditions.
-
Abstract Lightning climate change projections show large uncertainties caused by limited empirical knowledge and strong assumptions inherent to coarse-grid climate modeling. This study addresses the latter issue by implementing and applying the lightning potential index parameterization (LPI) into a fine-grid convection-permitting regional climate model (CPM). This setup takes advantage of the explicit representation of deep convection in CPMs and allows for process-oriented LPI inputs such as vertical velocity within convective cells and coexistence of microphysical hydrometeor types, which are known to contribute to charge separation mechanisms. The LPI output is compared to output from a simpler flash rate parameterization, namely the CAPE $$\times$$ × PREC parameterization, applied in a non-CPM on a coarser grid. The LPI’s implementation into the regional climate model COSMO-CLM successfully reproduces the observed lightning climatology, including its latitudinal gradient, its daily and hourly probability distributions, and its diurnal and annual cycles. Besides, the simulated temperature dependence of lightning reflects the observed dependency. The LPI outperforms the CAPE $$\times$$ × PREC parameterization in all applied diagnostics. Based on this satisfactory evaluation, we used the LPI to a climate change projection under the RCP8.5 scenario. For the domain under investigation centered over Germany, the LPI projects a decrease of $$4.8\%$$ 4.8 % in flash rate by the end of the century, in opposition to a projected increase of $$17.4\%$$ 17.4 % as projected using the CAPE $$\times$$ × PREC parameterization. The future decrease of LPI occurs mostly during the summer afternoons and is related to (i) a change in convection occurrence and (ii) changes in the microphysical mixing. The two parameterizations differ because of different convection occurrences in the CPM and non-CPM and because of changes in the microphysical mixing, which is only represented in the LPI lightning parameterization.
-
Abstract Reanalyses have the potential to provide meteorological information in areas where few or no traditional observation records are available. The terrestrial branch of the water cycle of CFSR, MERRA, ERA-Interim, and NARR is examined over Quebec, Canada, for the 1979–2008 time period. Precipitation, evaporation, runoff, and water balance are studied using observed precipitation and streamflows, according to three spatial scales: 1) the entire province of Quebec, 2) five regions derived from a climate classification, and 3) 11 river basins. The results reveal that MERRA provides a relatively closed water balance, while a significant residual was found for the other three reanalyses. MERRA and ERA-Interim seem to provide the most reliable precipitation over the province. On the other hand, precipitation from CFSR and NARR do not appear to be particularly reliable, especially over southern Quebec, as they almost systematically showed the highest and the lowest values, respectively. Moreover, the partitioning of precipitation into evaporation and runoff from MERRA and NARR does not agree with what was expected, particularly over southern, central, and eastern Quebec. Despite the weaknesses identified, the ability of reanalyses to reproduce the terrestrial water cycle of the recent past (i.e., 1979–2008) remains globally satisfactory. Nonetheless, their potential to provide reliable information must be validated by comparing reanalyses directly with weather stations, especially in remote areas.
-
Abstract Postprocessing of climate model outputs is usually performed to remove biases prior to performing climate change impact studies. The evaluation of the performance of bias correction methods is routinely done by comparing postprocessed outputs to observed data. However, such an approach does not take into account the inherent uncertainty linked to natural climate variability and may end up recommending unnecessary complex postprocessing methods. This study evaluates the performance of bias correction methods using natural variability as a baseline. This baseline implies that any bias between model simulations and observations is only significant if it is larger than the natural climate variability. Four bias correction methods are evaluated with respect to reproducing a set of climatic and hydrological statistics. When using natural variability as a baseline, complex bias correction methods still outperform the simplest ones for precipitation and temperature time series, although the differences are much smaller than in all previous studies. However, after driving a hydrological model using the bias-corrected precipitation and temperature, all bias correction methods perform similarly with respect to reproducing 46 hydrological metrics over two watersheds in different climatic zones. The sophisticated distribution mapping correction methods show little advantage over the simplest scaling method. The main conclusion is that simple bias correction methods appear to be just as good as other more complex methods for hydrological climate change impact studies. While sophisticated methods may appear more theoretically sound, this additional complexity appears to be unjustified in hydrological impact studies when taking into account the uncertainty linked to natural climate variability.
-
Abstract. A fundamental issue associated with the dynamical downscaling technique using limited-area models is related to the presence of a “spatial spin-up” belt close to the lateral boundaries where small-scale features are only partially developed. Here, we introduce a method to identify the distance from the border that is affected by the spatial spin-up (i.e., the spatial spin-up distance) of the precipitation field in convection-permitting model (CPM) simulations. Using a domain over eastern North America, this new method is applied to several simulations that differ on the nesting approach (single or double nesting) and the 3-D variables used to drive the CPM simulation. Our findings highlight three key points. Firstly, when using a single nesting approach, the spin-up distance from lateral boundaries can extend up to 300 km (around 120 CPM grid points), varying across seasons, boundaries and driving variables. Secondly, the greatest spin-up distances occur in winter at the western and southern boundaries, likely due to strong atmospheric inflow during these seasons. Thirdly, employing a double nesting approach with a comprehensive set of microphysical variables to drive CPM simulations offers clear advantages. The computational gains from reducing spatial spin-up outweigh the costs associated with the more demanding intermediate simulation of the double nesting. These results have practical implications for optimizing CPM simulation configurations, encompassing domain selection and driving strategies.
- 1
- 2