Votre recherche
Résultats 27 ressources
-
Abstract Environmental and socioeconomic drivers would alter landscapes, bringing various effects with different directions and magnitudes. Demonstrating these driving effects is key to relieving the conflicts between territorial vegetation restoration and regional economic growth. However, the relationship between ecological protection and economic development due to landscape dynamics has not been systematically demonstrated as environment is difficult to quantify by the monetary value. In this article, we explored the changes in gross ecosystem product (GEP) in the Three Gorges (TG) reservoir area and constructed a conceptual framework to explicate its driving mechanism. Our results suggested that topographic, soil, and climatic factors positively impact on GEP through their important effects on vegetation structure, distribution, and succession. Additionally, reforestation policies promote the conversion of farmland and grassland to forestland in the TG reservoir region, which was the main contributor to enhancing GEP. Conversely, socioeconomic factors negatively impact GEP, of which effects were mainly manifested by changes in the proportion of ecological land. Therefore, it is essential to maintain a suitable land use proportion in this region to optimize GEP, and we proposed a landscape restoration program to enhance four ecosystem productions. This article provides a reference for land resource allocation for environmental protection and sustainable development in ecologically fragile areas.
-
Abstract Background The accurate estimation of soil nutrient content is particularly important in view of its impact on plant growth and forest regeneration. In order to investigate soil nutrient content and quality for the natural regeneration of Dacrydium pectinatum communities in China, designing advanced and accurate estimation methods is necessary. Methods This study uses machine learning techniques created a series of comprehensive and novel models from which to evaluate soil nutrient content. Soil nutrient evaluation methods were built by using six support vector machines and four artificial neural networks. Results The generalized regression neural network model was the best artificial neural network evaluation model with the smallest root mean square error (5.1), mean error (− 0.85), and mean square prediction error (29). The accuracy rate of the combined k -nearest neighbors ( k -NN) local support vector machines model (i.e. k -nearest neighbors -support vector machine (KNNSVM)) for soil nutrient evaluation was high, comparing to the other five partial support vector machines models investigated. The area under curve value of generalized regression neural network (0.6572) was the highest, and the cross-validation result showed that the generalized regression neural network reached 92.5%. Conclusions Both the KNNSVM and generalized regression neural network models can be effectively used to evaluate soil nutrient content and quality grades in conjunction with appropriate model variables. Developing a new feasible evaluation method to assess soil nutrient quality for Dacrydium pectinatum , results from this study can be used as a reference for the adaptive management of rare and endangered tree species. This study, however, found some uncertainties in data acquisition and model simulations, which will be investigated in upcoming studies.
-
Climate change scenarios established by the Intergovernmental Panel on Climate Change have developed a significant tool for analyzing, modeling, and predicting future climate change impacts in different research fields after more than 30 years of development and refinement. In the wake of future climate change, the changes in forest structure and functions have become a frontier and focal area of global change research. This study mainly reviews and synthesizes climate change scenarios and their applications in forest ecosystem research over the past decade. These applications include changes in (1) forest structure and spatial vegetation distribution, (2) ecosystem structure, (3) ecosystem services, and (4) ecosystem stability. Although climate change scenarios are useful for predicting future climate change impacts on forest ecosystems, the accuracy of model simulations needs to be further improved. Based on existing studies, climate change scenarios are used in future simulation applications to construct a biomonitoring network platform integrating observations and predictions for better conservation of species diversity.
-
Machine learning, an important branch of artificial intelligence, is increasingly being applied in sciences such as forest ecology. Here, we review and discuss three commonly used methods of machine learning (ML) including decision-tree learning, artificial neural network, and support vector machine and their applications in four different aspects of forest ecology over the last decade. These applications include: (i) species distribution models, (ii) carbon cycles, (iii) hazard assessment and prediction, and (iv) other applications in forest management. Although ML approaches are useful for classification, modeling, and prediction in forest ecology research, further expansion of ML technologies is limited by the lack of suitable data and the relatively “higher threshold” of applications. However, the combined use of multiple algorithms and improved communication and cooperation between ecological researchers and ML developers still present major challenges and tasks for the betterment of future ecological research. We suggest that future applications of ML in ecology will become an increasingly attractive tool for ecologists in the face of “big data” and that ecologists will gain access to more types of data such as sound and video in the near future, possibly opening new avenues of research in forest ecology.
-
The spruce budworm (SBW) defoliates and kills conifer trees, consequently affecting carbon (C) exchanges between the land and atmosphere. Here, we developed a new TRIPLEX-Insect sub-model to quantify the impacts of insect outbreaks on forest C fluxes. We modeled annual defoliation (AD), cumulative defoliation (CD), and tree mortality. The model was validated against observed and published data at the stand level in the North Shore region of Québec and Cape Breton Island in Nova Scotia, Canada. The results suggest that TRIPLEX-Insect performs very well in capturing tree mortality following SBW outbreaks and slightly underestimates current annual volume increment (CAI). In both mature and immature forests, the simulation model suggests a larger reduction in gross primary productivity (GPP) than in autotrophic respiration (Ra) at the same defoliation level when tree mortality was low. After an SBW outbreak, the growth release of surviving trees contributes to the recovery of annual net ecosystem productivity (NEP) based on forest age if mortality is not excessive. Overall, the TRIPLEX-Insect model is capable of simulating C dynamics of balsam fir following SBW disturbances and can be used as an efficient tool in forest insect management.
-
Understanding the biomass, characteristics, and carbon sequestration of urban forests is crucial for maintaining and improving the quality of life and ensuring sustainable urban planning. Approaches to urban forest management have been incorporated into interdisciplinary, multifunctional, and technical efforts. In this review, we evaluate recent developments in urban forest research methods, compare the accuracy and efficiency of different methods, and identify emerging themes in urban forest assessment. This review focuses on urban forest biomass estimation and individual tree feature detection, showing that the rapid development of remote sensing technology and applications in recent years has greatly benefited the study of forest dynamics. Included in the review are light detection and ranging-based techniques for estimating urban forest biomass, deep learning algorithms that can extract tree crowns and identify tree species, methods for measuring large canopies using unmanned aerial vehicles to estimate forest structure, and approaches for capturing street tree information using street view images. Conventional methods based on field measurements are highly beneficial for accurately recording species-specific characteristics. There is an urgent need to combine multi-scale and spatiotemporal methods to improve urban forest detection at different scales.
-
Urban ecosystems are complex systems with anthropogenic features that generate considerable CO 2 emissions, which contributes to global climate change. Quantitative estimates of the carbon footprint of urban ecosystems are crucial for developing low-carbon development policies to mitigate climate change. Herein, we reviewed more than 195 urban carbon footprint and carbon footprint related studies, collated the recent progress in carbon footprint calculation methods and research applications of the urban ecosystem carbon footprint, analyzed the research applications of the carbon footprint of different cities, and focused on the need to study the urban ecosystem carbon footprint from a holistic perspective. Specifically, we aimed to: (i) compare the strengths and weaknesses of five existing carbon footprint calculation methods [life cycle assessment, input–output analysis, hybrid life cycle assessment, carbon footprint calculator, and Intergovernmental Panel on Climate Change (IPCC)]; (ii) analyze the status of current research on the carbon footprint of different urban subregions based on different features; and (iii) highlight new methods and areas of research on the carbon footprint of future urban ecosystems. Not all carbon footprint accounting methods are applicable to the carbon footprint determination of urban ecosystems; although the IPCC method is more widely used than the others, the hybrid life cycle assessment method is more accurate. With the emergence of new science and technology, quantitative methods to calculate the carbon footprint of urban ecosystems have evolved, becoming more accurate. Further development of new technologies, such as big data and artificial intelligence, to assess the carbon footprint of urban ecosystems is anticipated to help address the emerging challenges in urban ecosystem research effectively to achieve carbon neutrality and urban sustainability under global change.
-
Abstract Spruce budworm (SBW) outbreaks are a major natural disturbance in boreal forests of eastern North America. During large‐scale infestations, aerial spraying of bacterial insecticides is used to suppress local high‐density SBW populations. While the primary goal of spraying is the protection of wood volume for later harvest, it should also maintain carbon stored in trees. This study provides the first quantitative analysis of the efficacy of aerial spraying against SBW on carbon dynamics in balsam fir, spruce, and mixed fir–spruce forests. In this study, we used the TRIPLEX‐Insect model to simulate carbon dynamics with and without spray applications in 14 sites of the boreal forest located in various regions of Québec. We found that the efficacy of aerial spraying on reducing annual defoliation was greater in the early stage (<5 yr since the outbreak began) of the outbreak than in later (5–10 yr since the outbreak began) stage. Our results showed that more net ecosystem productivity is maintained in balsam fir (the most vulnerable species) than in either spruce or mixed fir–spruce forests following spraying. Also, average losses in aboveground biomass due to the SBW following spraying occurred more slowly than without spraying in balsam fir forests. Our findings suggest that aerial spraying could be used to maintain carbon in conifer forests during SBW disturbances, but that the efficacy of spray programs is affected by host species and stage of the SBW outbreak.
- 1
- 2