Votre recherche
Résultats 17 ressources
-
Paleobotanists have long built leaf climate models based on site mean of leaf physiognomic characteristics of woody dicotyledons species (WDS) for estimating past climate. To explore the potential of the order Ericales in estimating paleoclimate, we developed two linear models for each climatic factor. One is based on WDS, and the other is based on both WDS and leaf physiognomic characters of the order Ericales (WDS-E). We found that, compared with WDS models, WDS-E models improved greatly in mean annual precipitation (MAP), growing season precipitation (GSP) and mean annual range in temperature (MART). When the minimum species number of the order Ericales is three per site, the WDS-E models improved the r2 from 0.64 to 0.78 for MART, from 0.23 to 0.61 for ln(MAP), and from 0.37 to 0.64 for ln(GSP) compared with the WDS models. For mean annual temperature (MAT), the WDS-E model (r2 = 0.86) also exhibited a moderate improvement in precision over the WDS model (r2 = 0.82). This study demonstrates that other patterns, such as those of the order Ericales, can contribute additional information towards building more precise paleoclimate models.
-
Paleobotanists have long built leaf climate models based on site mean of leaf physiognomic characteristics of woody dicotyledons species (WDS) for estimating past climate. To explore the potential of the order Ericales in estimating paleoclimate, we developed two linear models for each climatic factor. One is based on WDS, and the other is based on both WDS and leaf physiognomic characters of the order Ericales (WDS-E). We found that, compared with WDS models, WDS-E models improved greatly in mean annual precipitation (MAP), growing season precipitation (GSP) and mean annual range in temperature (MART). When the minimum species number of the order Ericales is three per site, the WDS-E models improved the r2 from 0.64 to 0.78 for MART, from 0.23 to 0.61 for ln(MAP), and from 0.37 to 0.64 for ln(GSP) compared with the WDS models. For mean annual temperature (MAT), the WDS-E model (r2 = 0.86) also exhibited a moderate improvement in precision over the WDS model (r2 = 0.82). This study demonstrates that other patterns, such as those of the order Ericales, can contribute additional information towards building more precise paleoclimate models.
-
Abstract Biomass has been promoted as a promising energy resource to mitigate global climate change. To evaluate the contribution of biomass utilization to climate change mitigation under the “Grain for Green” program in Northern Shaanxi, China, a soil carbon dynamic model and a life cycle assessment model were integrated to examine the benefits of using Caragana korshinskii Kom. as an energy crop. We found that the annual dry biomass output is maintained at 0.7 Tg during the simulation period (2020–2097). Due to the compensatory effect of biomass regrowth, the global warming potential of biomass‐derived CO 2 emissions is approximately 0.045; therefore, the total annual biogenic CO 2 emission is 57,211 ± 6,168 Mg CO 2 eq. The total annual life cycle CO 2 emissions approach 867,072 Mg CO 2 eq yr −1 . Under the scenario of no biomass removal, final carbon storage ranges from 15.7 to 19.3 TgC, and the highest carbon sequestration rate is 0.47 TgC yr −1 . In comparison with the no biomass removal scenario, the carbon sequestration rate (close to 0 MgC yr −1 ) in the biomass utilization scenario indicates a carbon loss; however, a portion of the carbon loss (31.39–62.09%) can be offset by carbon emission reductions from the substitution of fossil fuels.
-
Understanding the impacts of nitrogen (N) addition on soil respiration (RS) and its temperature sensitivity (Q10) in tropical forests is very important for the global carbon cycle in a changing environment. Here, we investigated how RS respond to N addition in a tropical montane rainforest in Southern China. Four levels of N treatments (0, 25, 50, and 100 kg N ha−1 a−1 as control (CK), low N (N25), moderate N (N50), and high N (N100), respectively) were established in September 2010. Based on a static chamber-gas chromatography method, RS was measured from January 2015 to December 2018. RS exhibited significant seasonal variability, with low RS rates appeared in the dry season and high rates appeared in the wet season regardless of treatment. RS was significantly related to the measured soil temperature and moisture. Our results showed that soil RS increased after N additions, the mean annual RS was 7% higher in N25 plots, 8% higher in N50 plots, and 11% higher in N100 plots than that in the CK plots. However, the overall impacts of N additions on RS were statistically insignificant. For the entire study period, the CK, N25, N50, and N100 treatments yielded Q10 values of 2.27, 3.45, 4.11, and 2.94, respectively. N addition increased the temperature sensitivity (Q10) of RS. Our results suggest that increasing atmospheric N deposition may have a large impact on the stimulation of soil CO2 emissions from tropical rainforests in China.
-
This study presents a critical analysis regarding the assumption of carbon neutrality in life cycle assessment (LCA) models that assess climate change impacts of bioenergy usage. We identified a complex of problems in the carbon neutrality assumption, especially regarding bioenergy derived from forest residues. In this study, we summarized several issues related to carbon neutral assumptions, with particular emphasis on possible carbon accounting errors at the product level. We analyzed errors in estimating emissions in the supply chain, direct and indirect emissions due to forest residue extraction, biogenic CO 2 emission from biomass combustion for energy, and other effects related to forest residue extraction. Various modeling approaches are discussed in detail. We concluded that there is a need to correct accounting errors when estimating climate change impacts and proposed possible remedies. To accurately assess climate change impacts of bioenergy use, greater efforts are required to improve forest carbon cycle modeling, especially to identify and correct pitfalls associated with LCA accounting, forest residue extraction effects on forest fire risk and biodiversity. Uncertainties in accounting carbon emissions in LCA are also highlighted, and associated risks are discussed.
-
Phosphorus (P) is a key and a limiting nutrient in ecosystems and plays an important role in many physiological and biochemical processes, affecting both terrestrial ecosystem productivity and soil carbon storage. However, only a few global land surface models have incorporated P cycle and used to investigate the interactions of C-N-P and its limitation on terrestrial ecosystems. The overall objective of this study was to integrate the P cycle and its interaction with carbon (C) and nitrogen (N) into new processes model of TRIPLEX-CNP. In this study, key processes of the P cycle, including P pool sizes and fluxes in plant, litter, and soil were integrated into a new model framework, TRIPLEX-CNP. We also added dynamic P:C ratios for different ecosystems. Based on sensitivity analysis results, we identified the phosphorus resorption coefficient of leaf (rpleaf) as the most influential parameter to gross primary productivity (GPP) and biomass, and determined optimal coefficients for different plant functional types (PFTs). TRIPLEX-CNP was calibrated with 49 sites and validated against 116 sites across eight biomes globally. The results suggested that TRIPLEX-CNP performed well on simulating the global GPP and soil organic carbon (SOC) with respective R2 values of 0.85 and 0.78 (both p < 0.01) between simulated and observed values. The R2 of simulation and observation of total biomass are 0.67 (p < 0.01) by TRIPLEX-CNP. The overall model performance had been improved in global GPP, total biomass and SOC after adding the P cycle comparing with the earlier version. Our work represents the promising step toward new coupled ecosystem process models for improving the quantifications of land carbon cycle and reducing uncertainty.
-
Phosphorus (P) is a key and a limiting nutrient in ecosystems and plays an important role in many physiological and biochemical processes, affecting both terrestrial ecosystem productivity and soil carbon storage. However, only a few global land surface models have incorporated P cycle and used to investigate the interactions of C-N-P and its limitation on terrestrial ecosystems. The overall objective of this study was to integrate the P cycle and its interaction with carbon (C) and nitrogen (N) into new processes model of TRIPLEX-CNP. In this study, key processes of the P cycle, including P pool sizes and fluxes in plant, litter, and soil were integrated into a new model framework, TRIPLEX-CNP. We also added dynamic P:C ratios for different ecosystems. Based on sensitivity analysis results, we identified the phosphorus resorption coefficient of leaf (rpleaf) as the most influential parameter to gross primary productivity (GPP) and biomass, and determined optimal coefficients for different plant functional types (PFTs). TRIPLEX-CNP was calibrated with 49 sites and validated against 116 sites across eight biomes globally. The results suggested that TRIPLEX-CNP performed well on simulating the global GPP and soil organic carbon (SOC) with respective R2 values of 0.85 and 0.78 (both p < 0.01) between simulated and observed values. The R2 of simulation and observation of total biomass are 0.67 (p < 0.01) by TRIPLEX-CNP. The overall model performance had been improved in global GPP, total biomass and SOC after adding the P cycle comparing with the earlier version. Our work represents the promising step toward new coupled ecosystem process models for improving the quantifications of land carbon cycle and reducing uncertainty.
-
Tropical rainforest ecosystems are important when considering the global methane (CH4) budget and in climate change mitigation. However, there is a lack of direct and year-round observations of ecosystem-scale CH4 fluxes from tropical rainforest ecosystems. In this study, we examined the temporal variations in CH4 flux at the ecosystem scale and its annual budget and environmental controlling factors in a tropical rainforest of Hainan Island, China, using 3 years of continuous eddy covariance measurements from 2016 to 2018. Our results show that CH4 uptake generally occurred in this tropical rainforest, where strong CH4 uptake occurred in the daytime, and a weak CH4 uptake occurred at night with a mean daily CH4 flux of −4.5 nmol m−2 s−1. In this rainforest, the mean annual budget of CH4 for the 3 years was −1260 mg CH4 m−2 year−1. Furthermore, the daily averaged CH4 flux was not distinctly different between the dry season and wet season. Sixty-nine percent of the total variance in the daily CH4 flux could be explained by the artificial neural network (ANN) model, with a combination of air temperature (Tair), latent heat flux (LE), soil volumetric water content (VWC), atmospheric pressure (Pa), and soil temperature at −10 cm (Tsoil), although the linear correlation between the daily CH4 flux and any of these individual variables was relatively low. This indicates that CH4 uptake in tropical rainforests is controlled by multiple environmental factors and that their relationships are nonlinear. Our findings also suggest that tropical rainforests in China acted as a CH4 sink during 2016–2018, helping to counteract global warming.