Votre recherche
Résultats 4 ressources
-
Soil erosion by water affects soil organic carbon (SOC) migration and distribution, which are important processes for defining ecosystem carbon sources and sinks. Little has been done to quantify soil carbon erosion in the three major basins in China, the Yangtze River, Yellow River and Pearl River Basins, which contain the most eroded areas. This research attempts to quantify the lateral movement of SOC based on spatial and temporal patterns of water erosion rates derived from an empirical Unit Stream Power Erosion Deposition Model (USPED) model. The water erosion rates simulated by the USPED model agreed reasonably with observations (R2 = 0.43, P < 0.01). We showed that regional water erosion ranged within 23.3–50 Mg ha–1 year–1 during 1992–2013, inducing the lateral redistribution of SOC caused by erosion in the range of 0.027–0.049 Mg C ha–1 year–1, and that caused by deposition of 0.0079–0.015 Mg C ha–1 year–1, in the three basins. The total eroded SOC was 0.006, 0.002 and 0.001 Pg year–1 in the Yangtze River, Yellow River and Pearl River Basins respectively. The net eroded SOC in the three basins was ~0.0075 Pg C year–1. Overall, the annual average redistributed SOC rate caused by erosion was greater than that caused by deposition, and the SOC loss in the Yangtze River Basin was greatest among the three basins. Our study suggests that considering both processes of erosion and deposition – as well as effects of topography, rainfall, land use types and their interactions – on these processes are important to understand SOC redistribution caused by water erosion.
-
Abstract Intense grazing may lead to grassland degradation on the Qinghai-Tibetan Plateau, but it is difficult to predict where this will occur and to quantify it. Based on a process-based ecosystem model, we define a productivity-based stocking rate threshold that induces extreme grassland degradation to assess whether and where the current grazing activity in the region is sustainable. We find that the current stocking rate is below the threshold in ~80% of grassland areas, but in 55% of these grasslands the stocking rate exceeds half the threshold. According to our model projections, positive effects of climate change including elevated CO 2 can partly offset negative effects of grazing across nearly 70% of grasslands on the Plateau, but only in areas below the stocking rate threshold. Our analysis suggests that stocking rate that does not exceed 60% (within 50% to 70%) of the threshold may balance human demands with grassland protection in the face of climate change.
-
Abstract Process‐based land surface models are important tools for estimating global wetland methane (CH 4 ) emissions and projecting their behavior across space and time. So far there are no performance assessments of model responses to drivers at multiple time scales. In this study, we apply wavelet analysis to identify the dominant time scales contributing to model uncertainty in the frequency domain. We evaluate seven wetland models at 23 eddy covariance tower sites. Our study first characterizes site‐level patterns of freshwater wetland CH 4 fluxes (FCH 4 ) at different time scales. A Monte Carlo approach was developed to incorporate flux observation error to avoid misidentification of the time scales that dominate model error. Our results suggest that (a) significant model‐observation disagreements are mainly at multi‐day time scales (<15 days); (b) most of the models can capture the CH 4 variability at monthly and seasonal time scales (>32 days) for the boreal and Arctic tundra wetland sites but have significant bias in variability at seasonal time scales for temperate and tropical/subtropical sites; (c) model errors exhibit increasing power spectrum as time scale increases, indicating that biases at time scales <5 days could contribute to persistent systematic biases on longer time scales; and (d) differences in error pattern are related to model structure (e.g., proxy of CH 4 production). Our evaluation suggests the need to accurately replicate FCH 4 variability, especially at short time scales, in future wetland CH 4 model developments. , Plain Language Summary Land surface models are useful tools to estimate and predict wetland methane (CH 4 ) flux but there is no evaluation of modeled CH 4 flux error at different time scales. Here we use a statistical approach and observations from eddy covariance sites to evaluate the performance of seven wetland models for different wetland types. The results suggest models have captured CH 4 flux variability at monthly or seasonal time scales for boreal and Arctic tundra wetlands but failed to capture the observed seasonal variability for temperate and tropical/subtropical wetlands. The analysis suggests that improving modeled flux at short time scale is important for future model development. , Key Points Significant model‐observation disagreements were found at multi‐day and weekly time scales (<15 days) Models captured variability at monthly and seasonal time (42–142 days) scales for boreal and Arctic tundra sites but not for temperate and tropical sites The model errors show that biases at multi‐day time scales may contribute to persistent systematic biases on longer time scales