Accéder au contenu Accéder au menu principal Accéder à la recherche
Accéder au contenu Accéder au menu principal
UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
UQAM logo
Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • Bibliographie
  • Accueil
  1. Vitrine des bibliographies
  2. Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  3. Résultats
  • Accueil

Votre recherche

Réinitialiser la recherche

Aide

L’interface de recherche est composée de trois sections : Rechercher, Explorer et Résultats. Celles-ci sont décrites en détail ci-dessous.

Vous pouvez lancer une recherche aussi bien à partir de la section Rechercher qu’à partir de la section Explorer.

Rechercher

Cette section affiche vos critères de recherche courants et vous permet de soumettre des mots-clés à chercher dans la bibliographie.

  • Chaque nouvelle soumission ajoute les mots-clés saisis à la liste des critères de recherche.
  • Pour lancer une nouvelle recherche plutôt qu’ajouter des mots-clés à la recherche courante, utilisez le bouton Réinitialiser la recherche, puis entrez vos mots-clés.
  • Pour remplacer un mot-clé déjà soumis, veuillez d’abord le retirer en décochant sa case à cocher, puis soumettre un nouveau mot-clé.
  • Vous pouvez contrôler la portée de votre recherche en choisissant où chercher. Les options sont :
    • Partout : repère vos mots-clés dans tous les champs des références bibliographiques ainsi que dans le contenu textuel des documents disponibles.
    • Dans les auteurs ou contributeurs : repère vos mots-clés dans les noms d’auteurs ou de contributeurs.
    • Dans les titres : repère vos mots-clés dans les titres.
    • Dans tous les champs : repère vos mots-clés dans tous les champs des notices bibliographiques.
    • Dans les documents : repère vos mots-clés dans le contenu textuel des documents disponibles.
  • Vous pouvez utiliser les opérateurs booléens avec vos mots-clés :
    • ET : repère les références qui contiennent tous les termes fournis. Ceci est la relation par défaut entre les termes séparés d’un espace. Par exemple, a b est équivalent à a ET b.
    • OU : repère les références qui contiennent n’importe lequel des termes fournis. Par exemple, a OU b.
    • SAUF : exclut les références qui contiennent le terme fourni. Par exemple, SAUF a.
    • Les opérateurs booléens doivent être saisis en MAJUSCULES.
  • Vous pouvez faire des groupements logiques (avec les parenthèses) pour éviter les ambiguïtés lors de la combinaison de plusieurs opérateurs booléens. Par exemple, (a OU b) ET c.
  • Vous pouvez demander une séquence exacte de mots (avec les guillemets droits), par exemple "a b c". Par défaut la différence entre les positions des mots est de 1, ce qui signifie qu’une référence sera repérée si elle contient les mots et qu’ils sont consécutifs. Une distance maximale différente peut être fournie (avec le tilde), par exemple "a b"~2 permet jusqu’à un terme entre a et b, ce qui signifie que la séquence a c b pourrait être repérée aussi bien que a b.
  • Vous pouvez préciser que certains termes sont plus importants que d’autres (avec l’accent circonflexe). Par exemple, a^2 b c^0.5 indique que a est deux fois plus important que b dans le calcul de pertinence des résultats, tandis que c est de moitié moins important. Ce type de facteur peut être appliqué à un groupement logique, par exemple (a b)^3 c.
  • La recherche par mots-clés est insensible à la casse et les accents et la ponctuation sont ignorés.
  • Les terminaisons des mots sont amputées pour la plupart des champs, tels le titre, le résumé et les notes. L’amputation des terminaisons vous évite d’avoir à prévoir toutes les formes possibles d’un mot dans vos recherches. Ainsi, les termes municipal, municipale et municipaux, par exemple, donneront tous le même résultat. L’amputation des terminaisons n’est pas appliquée au texte des champs de noms, tels auteurs/contributeurs, éditeur, publication.

Explorer

Cette section vous permet d’explorer les catégories associées aux références.

  • Les catégories peuvent servir à affiner votre recherche. Cochez une catégorie pour l’ajouter à vos critères de recherche. Les résultats seront alors restreints aux références qui sont associées à cette catégorie.
  • Dé-cochez une catégorie pour la retirer de vos critères de recherche et élargir votre recherche.
  • Les nombres affichés à côté des catégories indiquent combien de références sont associées à chaque catégorie considérant les résultats de recherche courants. Ces nombres varieront en fonction de vos critères de recherche, de manière à toujours décrire le jeu de résultats courant. De même, des catégories et des facettes entières pourront disparaître lorsque les résultats de recherche ne contiennent aucune référence leur étant associées.
  • Une icône de flèche () apparaissant à côté d’une catégorie indique que des sous-catégories sont disponibles. Vous pouvez appuyer sur l’icône pour faire afficher la liste de ces catégories plus spécifiques. Par la suite, vous pouvez appuyer à nouveau pour masquer la liste. L’action d’afficher ou de masquer les sous-catégories ne modifie pas vos critères de recherche; ceci vous permet de rapidement explorer l’arborescence des catégories, si désiré.

Résultats

Cette section présente les résultats de recherche. Si aucun critère de recherche n’a été fourni, elle montre toute la bibliographie (jusqu’à 20 références par page).

  • Chaque référence de la liste des résultats est un hyperlien vers sa notice bibliographique complète. À partir de la notice, vous pouvez continuer à explorer les résultats de recherche en naviguant vers les notices précédentes ou suivantes de vos résultats de recherche, ou encore retourner à la liste des résultats.
  • Des hyperliens supplémentaires, tels que Consulter le document ou Consulter sur [nom d’un site web], peuvent apparaître sous un résultat de recherche. Ces liens vous fournissent un accès rapide à la ressource, des liens que vous trouverez également dans la notice bibliographique.
  • Le bouton Résumés vous permet d’activer ou de désactiver l’affichage des résumés dans la liste des résultats de recherche. Toutefois, activer l’affichage des résumés n’aura aucun effet sur les résultats pour lesquels aucun résumé n’est disponible.
  • Diverses options sont fournies pour permettre de contrôler l’ordonnancement les résultats de recherche. L’une d’elles est l’option de tri par Pertinence, qui classe les résultats du plus pertinent au moins pertinent. Le score utilisé à cette fin prend en compte la fréquence des mots ainsi que les champs dans lesquels ils apparaissent. Par exemple, si un terme recherché apparaît fréquemment dans une référence ou est l’un d’un très petit nombre de termes utilisé dans cette référence, cette référence aura probablement un score plus élevé qu’une autre où le terme apparaît moins fréquemment ou qui contient un très grand nombre de mots. De même, le score sera plus élevé si un terme est rare dans l’ensemble de la bibliographie que s’il est très commun. De plus, si un terme de recherche apparaît par exemple dans le titre d’une référence, le score de cette référence sera plus élevé que s’il apparaissait dans un champ moins important tel le résumé.
  • Le tri par Pertinence n’est disponible qu’après avoir soumis des mots-clés par le biais de la section Rechercher.
  • Les catégories sélectionnées dans la section Explorer n’ont aucun effet sur le tri par pertinence. Elles ne font que filtrer la liste des résultats.
Dans les auteurs ou contributeurs
  • "Liu, Jinxun"
Année de publication
  • Entre 2000 et 2025

Résultats 20 ressources

PertinenceDate décroissanteDate croissanteAuteur A-ZAuteur Z-ATitre A-ZTitre Z-A
Résumés
  • Peng, C., Zhang, L., & Liu, J. (2001). Developing and Validating Nonlinear Height–Diameter Models for Major Tree Species of Ontario’s Boreal Forests. Northern Journal of Applied Forestry, 18(3), 87–94. https://doi.org/10.1093/njaf/18.3.87

    Abstract Six commonly used nonlinear growth functions were fitted to individual tree height-diameter data of nine major tree species in Ontario's boreal forests. A total of 22,571 trees was collected from new permanent sample plots across the northeast and northwest of Ontario.The available data for each species were split into two sets: the majority (90%) was used to estimate model parameters, and the remaining data (10%) were reserved to validate the models. The performance of the models was compared and evaluated by model, R2, mean difference, and mean absolute difference. The results showed that these six sigmoidal models were able to capture the height–diameter relationships and fit the data equally well, but produced different asymptote estimates. Sigmoidal models such as Chapman–Richards, Weibull, and Schnute functions provided the most satisfactory height predictions. The effect of model performance on tree volume estimation was also investigated. Tree volumes of different species were computed by Honer's volume equations using a range of diameters and the predicted tree total height from the six models. For trees with diameter less than 55 cm, the six height-diameter models produced very similar results for all species, while more differentiation among the models was observed for large-sized trees (e.g., diameters > 80 cm). North. J. Appl. For. 18:87–94.

    Consulter sur academic.oup.com
  • Liu, J., Peng, C., Dang, Q., Apps, M., & Jiang, H. (2002). A component object model strategy for reusing ecosystem models. Computers and Electronics in Agriculture, 35(1), 17–33. https://doi.org/10.1016/S0168-1699(02)00067-4
    Consulter sur linkinghub.elsevier.com
  • Peng, C., Liu, J., Dang, Q., Zhou, X., & Apps, M. (2002). Developing carbon-based ecological indicators to monitor sustainability of Ontario’s forests. Ecological Indicators, 1(4), 235–246. https://doi.org/10.1016/S1470-160X(02)00010-9
    Consulter sur linkinghub.elsevier.com
  • Zhu, Q., Jiang, H., Peng, C., Liu, J., Fang, X., Chen, H., & Liu, S. (2013). Assessing the spatio-temporal variation and uncertainty patterns of historical and future projected water resources in China. Journal of Water and Climate Change, 4(3), 302–316. https://doi.org/10.2166/wcc.2013.072

    The spatial and temporal variation and uncertainty of precipitation and runoff in China were compared and evaluated between historical and future periods under different climate change scenarios. The precipitation pattern is derived from observed and future projected precipitation data for historical and future periods, respectively. The runoff is derived from simulation results in historical and future periods using a dynamic global vegetation model (DGVM) forced with historical observed and global climate models (GCMs) future projected climate data, respectively. One GCM (CGCM3.1) under two emission scenarios (SRES A2 and SRES B1) was used for the future period simulations. The results indicated high uncertainties and variations in climate change effects on hydrological processes in China: precipitation and runoff showed a significant increasing trend in the future period but a decreasing trend in the historical period at the national level; the temporal variation and uncertainty of projected precipitation and runoff in the future period were predicted to be higher than those in the historical period; the levels of precipitation and runoff in the future period were higher than those in the historical period. The change in trends of precipitation and runoff are highly affected by different climate change scenarios. GCM structure and emission scenarios should be the major sources of uncertainty.

    Consulter sur iwaponline.com
  • Jiang, H., Apps, M. J., Peng, C., Zhang, Y., & Liu, J. (2002). Modelling the influence of harvesting on Chinese boreal forest carbon dynamics. Forest Ecology and Management, 169(1–2), 65–82. https://doi.org/10.1016/S0378-1127(02)00299-2
    Consulter sur linkinghub.elsevier.com
  • Peng, C., Liu, J., Dang, Q., Apps, M. J., & Jiang, H. (2002). TRIPLEX: a generic hybrid model for predicting forest growth and carbon and nitrogen dynamics. Ecological Modelling, 153(1–2), 109–130. https://doi.org/10.1016/S0304-3800(01)00505-1
    Consulter sur linkinghub.elsevier.com
  • Zhu, Q., Jiang, H., Peng, C., Liu, J., Fang, X., Wei, X., Liu, S., & Zhou, G. (2012). Effects of future climate change, CO2 enrichment, and vegetation structure variation on hydrological processes in China. Global and Planetary Change, 80–81, 123–135. https://doi.org/10.1016/j.gloplacha.2011.10.010
    Consulter sur linkinghub.elsevier.com
  • Liu, J., Peng, C., Apps, M., Dang, Q., Banfield, E., & Kurz, W. (2002). Historic carbon budgets of Ontario’s forest ecosystems. Forest Ecology and Management, 169(1–2), 103–114. https://doi.org/10.1016/S0378-1127(02)00301-8
    Consulter sur linkinghub.elsevier.com
  • Zhu, Q., Jiang, H., Peng, C., Liu, J., Wei, X., Fang, X., Liu, S., Zhou, G., & Yu, S. (2011). Evaluating the effects of future climate change and elevated CO2 on the water use efficiency in terrestrial ecosystems of China. Ecological Modelling, 222(14), 2414–2429. https://doi.org/10.1016/j.ecolmodel.2010.09.035
    Consulter sur linkinghub.elsevier.com
  • Zhu, Q., Jiang, H., Liu, J., Wei, X., Peng, C., Fang, X., Liu, S., Zhou, G., Yu, S., & Ju, W. (2010). Evaluating the spatiotemporal variations of water budget across China over 1951–2006 using IBIS model. Hydrological Processes, 24(4), 429–445. https://doi.org/10.1002/hyp.7496

    Abstract The Integrated Biosphere Simulator is used to evaluate the spatial and temporal patterns of the crucial hydrological variables [run‐off and actual evapotranspiration (AET)] of the water balance across China for the period 1951–2006 including a precipitation analysis. Results suggest three major findings. First, simulated run‐off captured 85% of the spatial variability and 80% of the temporal variability for 85 hydrological gauges across China. The mean relative errors were within 20% for 66% of the studied stations and within 30% for 86% of the stations. The Nash–Sutcliffe coefficients indicated that the quantity pattern of run‐off was also captured acceptably except for some watersheds in southwestern and northwestern China. The possible reasons for underestimation of run‐off in the Tibetan plateau include underestimation of precipitation and uncertainties in other meteorological data due to complex topography, and simplified representations of the soil depth attribute and snow processes in the model. Second, simulated AET matched reasonably with estimated values calculated as the residual of precipitation and run‐off for watersheds controlled by the hydrological gauges. Finally, trend analysis based on the Mann–Kendall method indicated that significant increasing and decreasing patterns in precipitation appeared in the northwest part of China and the Yellow River region, respectively. Significant increasing and decreasing trends in AET were detected in the Southwest region and the Yangtze River region, respectively. In addition, the Southwest region, northern China (including the Heilongjiang, Liaohe, and Haihe Basins), and the Yellow River Basin showed significant decreasing trends in run‐off, and the Zhemin hydrological region showed a significant increasing trend. Copyright © 2009 John Wiley & Sons, Ltd.

    Consulter sur onlinelibrary.wiley.com
  • Lu, X., Jiang, H., Liu, J., Zhang, X., Jin, J., Zhu, Q., Zhang, Z., & Peng, C. (2016). Simulated effects of nitrogen saturation on the global carbon budget using the IBIS model. Scientific Reports, 6(1), 39173. https://doi.org/10.1038/srep39173

    Abstract Over the past 100 years, human activity has greatly changed the rate of atmospheric N (nitrogen) deposition in terrestrial ecosystems, resulting in N saturation in some regions of the world. The contribution of N saturation to the global carbon budget remains uncertain due to the complicated nature of C-N (carbon-nitrogen) interactions and diverse geography. Although N deposition is included in most terrestrial ecosystem models, the effect of N saturation is frequently overlooked. In this study, the IBIS (Integrated BIosphere Simulator) was used to simulate the global-scale effects of N saturation during the period 1961–2009. The results of this model indicate that N saturation reduced global NPP (Net Primary Productivity) and NEP (Net Ecosystem Productivity) by 0.26 and 0.03 Pg C yr −1 , respectively. The negative effects of N saturation on carbon sequestration occurred primarily in temperate forests and grasslands. In response to elevated CO 2 levels, global N turnover slowed due to increased biomass growth, resulting in a decline in soil mineral N. These changes in N cycling reduced the impact of N saturation on the global carbon budget. However, elevated N deposition in certain regions may further alter N saturation and C-N coupling.

    Consulter sur www.nature.com
  • Zhu, Q., Peng, C., Chen, H., Fang, X., Liu, J., Jiang, H., Yang, Y., & Yang, G. (2015). Estimating global natural wetland methane emissions using process modelling: spatio‐temporal patterns and contributions to atmospheric methane fluctuations. Global Ecology and Biogeography, 24(8), 959–972. https://doi.org/10.1111/geb.12307

    Abstract Aim The fluctuations of atmospheric methane ( CH 4 ) that have occurred in recent decades are not fully understood, particularly with regard to the contribution from wetlands. The application of spatially explicit parameters has been suggested as an effective method for reducing uncertainties in bottom‐up approaches to wetland CH 4 emissions, but has not been included in recent studies. Our goal was to estimate spatio‐temporal patterns of global wetland CH 4 emissions using a process model and then to identify the contribution of wetland emissions to atmospheric CH 4 fluctuations. Location Global. Methods A process‐based model integrated with full descriptions of methanogenesis ( TRIPLEX‐GHG ) was used to simulate global wetland CH 4 emissions. Results Global annual wetland CH 4 emissions ranged from 209 to 245  T g CH 4 year −1 between 1901 and 2012, with peaks occurring in 1991 and 2012. There is a decreasing trend between 1990 and 2010 with a rate of approximately 0.48  T g CH 4 year −1 , which was largely caused by emissions from tropical wetlands showing a decreasing trend of 0.44  T g CH 4 year −1 since the 1970s. Emissions from tropical, temperate and high‐latitude wetlands comprised 59, 26 and 15% of global emissions, respectively. Main conclusion Global wetland CH 4 emissions, the interannual variability of which was primary controlled by tropical wetlands, partially drive the atmospheric CH 4 burden. The stable to decreasing trend in wetland CH 4 emissions, a result of a balance of emissions from tropical and extratropical wetlands, was a particular factor in slowing the atmospheric CH 4 growth rate during the 1990s. The rapid decrease in tropical wetland CH 4 emissions that began in 2000 was supposed to offset the increase in anthropogenic emissions and resulted in a relatively stable level of atmospheric CH 4 from 2000 to 2006. Increasing wetland CH 4 emissions, particularly after 2010, should be an important contributor to the growth in atmospheric CH 4 seen since 2007.

    Consulter sur onlinelibrary.wiley.com
  • Yang, Y., Zhu, Q., Liu, J., Li, M., Yuan, M., Chen, H., Peng, C., & Yang, Z. (2020). Estimating soil organic carbon redistribution in three major river basins of China based on erosion processes. Soil Research, 58(6), 540. https://doi.org/10.1071/SR19325

    Soil erosion by water affects soil organic carbon (SOC) migration and distribution, which are important processes for defining ecosystem carbon sources and sinks. Little has been done to quantify soil carbon erosion in the three major basins in China, the Yangtze River, Yellow River and Pearl River Basins, which contain the most eroded areas. This research attempts to quantify the lateral movement of SOC based on spatial and temporal patterns of water erosion rates derived from an empirical Unit Stream Power Erosion Deposition Model (USPED) model. The water erosion rates simulated by the USPED model agreed reasonably with observations (R2 = 0.43, P < 0.01). We showed that regional water erosion ranged within 23.3–50 Mg ha–1 year–1 during 1992–2013, inducing the lateral redistribution of SOC caused by erosion in the range of 0.027–0.049 Mg C ha–1 year–1, and that caused by deposition of 0.0079–0.015 Mg C ha–1 year–1, in the three basins. The total eroded SOC was 0.006, 0.002 and 0.001 Pg year–1 in the Yangtze River, Yellow River and Pearl River Basins respectively. The net eroded SOC in the three basins was ~0.0075 Pg C year–1. Overall, the annual average redistributed SOC rate caused by erosion was greater than that caused by deposition, and the SOC loss in the Yangtze River Basin was greatest among the three basins. Our study suggests that considering both processes of erosion and deposition – as well as effects of topography, rainfall, land use types and their interactions – on these processes are important to understand SOC redistribution caused by water erosion.

    Consulter sur www.publish.csiro.au
  • Yang Yanzheng, 杨延征, Ma Yuandan, 马元丹, Jiang Hong, 江洪, Zhu Qiu’an, 朱求安, Liu Jinxun, 刘金勋, & Peng Changhui, 彭长辉. (2016). Evaluating the carbon budget pattern of Chinese terrestrial ecosystem from 1960 to 2006 using Integrated Biosphere Simulator. Acta Ecologica Sinica, 36(13). https://doi.org/10.5846/stxb201410262092
    Consulter sur www.ecologica.cn
  • Zhang, K., Zhu, Q., Liu, J., Wang, M., Zhou, X., Li, M., Wang, K., Ding, J., & Peng, C. (2019). Spatial and temporal variations of N2O emissions from global forest and grassland ecosystems. Agricultural and Forest Meteorology, 266–267, 129–139. https://doi.org/10.1016/j.agrformet.2018.12.011
    Consulter sur linkinghub.elsevier.com
  • Yuan, M., Zhu, Q., Zhang, J., Liu, J., Chen, H., Peng, C., Li, P., Li, M., Wang, M., & Zhao, P. (2021). Global response of terrestrial gross primary productivity to climate extremes. Science of The Total Environment, 750, 142337. https://doi.org/10.1016/j.scitotenv.2020.142337
    Consulter sur linkinghub.elsevier.com
  • Zhu, Q., Peng, C., Ciais, P., Jiang, H., Liu, J., Bousquet, P., Li, S., Chang, J., Fang, X., Zhou, X., Chen, H., Liu, S., Lin, G., Gong, P., Wang, M., Wang, H., Xiang, W., & Chen, J. (2017). Interannual variation in methane emissions from tropical wetlands triggered by repeated El Niño Southern Oscillation. Global Change Biology, 23(11), 4706–4716. https://doi.org/10.1111/gcb.13726

    Abstract Methane (CH 4 ) emissions from tropical wetlands contribute 60%–80% of global natural wetland CH 4 emissions. Decreased wetland CH 4 emissions can act as a negative feedback mechanism for future climate warming and vice versa. The impact of the El Niño–Southern Oscillation (ENSO) on CH 4 emissions from wetlands remains poorly quantified at both regional and global scales, and El Niño events are expected to become more severe based on climate models’ projections. We use a process‐based model of global wetland CH 4 emissions to investigate the impacts of the ENSO on CH 4 emissions in tropical wetlands for the period from 1950 to 2012. The results show that CH 4 emissions from tropical wetlands respond strongly to repeated ENSO events, with negative anomalies occurring during El Niño periods and with positive anomalies occurring during La Niña periods. An approximately 8‐month time lag was detected between tropical wetland CH 4 emissions and ENSO events, which was caused by the combined time lag effects of ENSO events on precipitation and temperature over tropical wetlands. The ENSO can explain 49% of interannual variations for tropical wetland CH 4 emissions. Furthermore, relative to neutral years, changes in temperature have much stronger effects on tropical wetland CH 4 emissions than the changes in precipitation during ENSO periods. The occurrence of several El Niño events contributed to a lower decadal mean growth rate in atmospheric CH 4 concentrations throughout the 1980s and 1990s and to stable atmospheric CH 4 concentrations from 1999 to 2006, resulting in negative feedback to global warming.

    Consulter sur onlinelibrary.wiley.com
  • Zhu, Q., Chen, H., Peng, C., Liu, J., Piao, S., He, J.-S., Wang, S., Zhao, X., Zhang, J., Fang, X., Jin, J., Yang, Q.-E., Ren, L., & Wang, Y. (2023). An early warning signal for grassland degradation on the Qinghai-Tibetan Plateau. Nature Communications, 14(1), 6406. https://doi.org/10.1038/s41467-023-42099-4

    Abstract Intense grazing may lead to grassland degradation on the Qinghai-Tibetan Plateau, but it is difficult to predict where this will occur and to quantify it. Based on a process-based ecosystem model, we define a productivity-based stocking rate threshold that induces extreme grassland degradation to assess whether and where the current grazing activity in the region is sustainable. We find that the current stocking rate is below the threshold in ~80% of grassland areas, but in 55% of these grasslands the stocking rate exceeds half the threshold. According to our model projections, positive effects of climate change including elevated CO 2 can partly offset negative effects of grazing across nearly 70% of grasslands on the Plateau, but only in areas below the stocking rate threshold. Our analysis suggests that stocking rate that does not exceed 60% (within 50% to 70%) of the threshold may balance human demands with grassland protection in the face of climate change.

    Consulter sur www.nature.com
  • Zhu, Q., Peng, C., Liu, J., Jiang, H., Fang, X., Chen, H., Niu, Z., Gong, P., Lin, G., Wang, M., Wang, H., Yang, Y., Chang, J., Ge, Y., Xiang, W., Deng, X., & He, J.-S. (2016). Climate-driven increase of natural wetland methane emissions offset by human-induced wetland reduction in China over the past three decades. Scientific Reports, 6(1), 38020. https://doi.org/10.1038/srep38020

    Abstract Both anthropogenic activities and climate change can affect the biogeochemical processes of natural wetland methanogenesis. Quantifying possible impacts of changing climate and wetland area on wetland methane (CH 4 ) emissions in China is important for improving our knowledge on CH 4 budgets locally and globally. However, their respective and combined effects are uncertain. We incorporated changes in wetland area derived from remote sensing into a dynamic CH 4 model to quantify the human and climate change induced contributions to natural wetland CH 4 emissions in China over the past three decades. Here we found that human-induced wetland loss contributed 34.3% to the CH 4 emissions reduction (0.92 TgCH 4 ), and climate change contributed 20.4% to the CH 4 emissions increase (0.31 TgCH 4 ), suggesting that decreasing CH 4 emissions due to human-induced wetland reductions has offset the increasing climate-driven CH 4 emissions. With climate change only, temperature was a dominant controlling factor for wetland CH 4 emissions in the northeast (high latitude) and Qinghai-Tibet Plateau (high altitude) regions, whereas precipitation had a considerable influence in relative arid north China. The inevitable uncertainties caused by the asynchronous for different regions or periods due to inter-annual or seasonal variations among remote sensing images should be considered in the wetland CH 4 emissions estimation.

    Consulter sur www.nature.com
  • Zhang, Z., Bansal, S., Chang, K., Fluet‐Chouinard, E., Delwiche, K., Goeckede, M., Gustafson, A., Knox, S., Leppänen, A., Liu, L., Liu, J., Malhotra, A., Markkanen, T., McNicol, G., Melton, J. R., Miller, P. A., Peng, C., Raivonen, M., Riley, W. J., … Poulter, B. (2023). Characterizing Performance of Freshwater Wetland Methane Models Across Time Scales at FLUXNET‐CH4 Sites Using Wavelet Analyses. Journal of Geophysical Research: Biogeosciences, 128(11), e2022JG007259. https://doi.org/10.1029/2022JG007259

    Abstract Process‐based land surface models are important tools for estimating global wetland methane (CH 4 ) emissions and projecting their behavior across space and time. So far there are no performance assessments of model responses to drivers at multiple time scales. In this study, we apply wavelet analysis to identify the dominant time scales contributing to model uncertainty in the frequency domain. We evaluate seven wetland models at 23 eddy covariance tower sites. Our study first characterizes site‐level patterns of freshwater wetland CH 4 fluxes (FCH 4 ) at different time scales. A Monte Carlo approach was developed to incorporate flux observation error to avoid misidentification of the time scales that dominate model error. Our results suggest that (a) significant model‐observation disagreements are mainly at multi‐day time scales (<15 days); (b) most of the models can capture the CH 4 variability at monthly and seasonal time scales (>32 days) for the boreal and Arctic tundra wetland sites but have significant bias in variability at seasonal time scales for temperate and tropical/subtropical sites; (c) model errors exhibit increasing power spectrum as time scale increases, indicating that biases at time scales <5 days could contribute to persistent systematic biases on longer time scales; and (d) differences in error pattern are related to model structure (e.g., proxy of CH 4 production). Our evaluation suggests the need to accurately replicate FCH 4 variability, especially at short time scales, in future wetland CH 4 model developments. , Plain Language Summary Land surface models are useful tools to estimate and predict wetland methane (CH 4 ) flux but there is no evaluation of modeled CH 4 flux error at different time scales. Here we use a statistical approach and observations from eddy covariance sites to evaluate the performance of seven wetland models for different wetland types. The results suggest models have captured CH 4 flux variability at monthly or seasonal time scales for boreal and Arctic tundra wetlands but failed to capture the observed seasonal variability for temperate and tropical/subtropical wetlands. The analysis suggests that improving modeled flux at short time scale is important for future model development. , Key Points Significant model‐observation disagreements were found at multi‐day and weekly time scales (<15 days) Models captured variability at monthly and seasonal time (42–142 days) scales for boreal and Arctic tundra sites but not for temperate and tropical sites The model errors show that biases at multi‐day time scales may contribute to persistent systematic biases on longer time scales

    Consulter sur agupubs.onlinelibrary.wiley.com
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Flux web personnalisé
Dernière mise à jour depuis la base de données : 28/05/2025 05:00 (UTC)

Explorer

Auteur·e·s

  • Peng, Changhui (20)

Type de ressource

  • Article de revue (20)

Année de publication

  • Entre 2000 et 2025
    • Entre 2000 et 2009 (6)
      • 2001 (1)
      • 2002 (5)
    • Entre 2010 et 2019 (10)
      • 2010 (1)
      • 2011 (1)
      • 2012 (1)
      • 2013 (1)
      • 2015 (1)
      • 2016 (3)
      • 2017 (1)
      • 2019 (1)
    • Entre 2020 et 2025 (4)
      • 2020 (1)
      • 2021 (1)
      • 2023 (2)

Explorer

UQAM - Université du Québec à Montréal

  • Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • bibliotheques@uqam.ca

Accessibilité Web