Votre recherche
Résultats 30 ressources
-
Climate change scenarios established by the Intergovernmental Panel on Climate Change have developed a significant tool for analyzing, modeling, and predicting future climate change impacts in different research fields after more than 30 years of development and refinement. In the wake of future climate change, the changes in forest structure and functions have become a frontier and focal area of global change research. This study mainly reviews and synthesizes climate change scenarios and their applications in forest ecosystem research over the past decade. These applications include changes in (1) forest structure and spatial vegetation distribution, (2) ecosystem structure, (3) ecosystem services, and (4) ecosystem stability. Although climate change scenarios are useful for predicting future climate change impacts on forest ecosystems, the accuracy of model simulations needs to be further improved. Based on existing studies, climate change scenarios are used in future simulation applications to construct a biomonitoring network platform integrating observations and predictions for better conservation of species diversity.
-
Methane (CH4) is a vital greenhouse gas with a 28-fold higher global warming potential than carbon dioxide when considering a molar basis for the time horizon of 100 years. Here, we investigated the variation of soil CH4 fluxes, soil physiochemical properties, and CH4-related bacteria community composition of two forests in China. We measured CH4 fluxes using static chambers and analyzed soil bacterial communities using next-generation high-throughput sequencing in a temperate broad-leaved deciduous forest at Baotianman Nature Reserve (TBDF-BTM) and a tropical rainforest at Jianfengling National Natural Reserve (TRF-JFL). Our results showed that the soils from both sites were CH4 sinks. Significant variation in soil CH4 fluxes was found at TBDF-BTM exclusively, while no seasonal variation in the CH4 uptake was observed at TRF-JFL. The CH4 fluxes at TBDF-BTM were substantially higher than those at TRF-JFL during all seasons. One genus of methanotrophs and three genera of methylotrophs were detected at both sites, though they had no direct relationship with soil CH4 fluxes. Water-filled pore space and soil total carbon content are the main factors controlling the soil CH4 fluxes at TBDF-BTM. At TRF-JFL, the soil CH4 fluxes showed no significant correlations with any of the soil properties. This study improves our understanding of soil CH4 fluxes and their influencing factors in forests in different climatic zones and provides a reference for future investigation of forest soil CH4 fluxes, the forest ecosystem carbon cycle, and the forest CH4 model.
-
Methane accounts for 20% of the global warming caused by greenhouse gases, and wastewater is a major anthropogenic source of methane. Based on the Intergovernmental Panel on Climate Change greenhouse gas inventory guidelines and current research findings, we calculated the amount of methane emissions from 2000 to 2014 that originated from wastewater from different provinces in China. Methane emissions from wastewater increased from 1349.01 to 3430.03 Gg from 2000 to 2014, and the mean annual increase was 167.69 Gg. The methane emissions from industrial wastewater treated by wastewater treatment plants ( E It ) accounted for the highest proportion of emissions. We also estimated the future trend of industrial wastewater methane emissions using the artificial neural network model. A comparison of the emissions for the years 2020, 2010, and 2000 showed an increasing trend in methane emissions in China and a spatial transition of industrial wastewater emissions from eastern and southern regions to central and southwestern regions and from coastal regions to inland regions. These changes were caused by changes in economics, demographics, and relevant policies. , Key Points Methane emission from wastewater from 2000 to 2014 was calculated to increase from 1349.01 Gg to 3430.03 Gg. Methane emission from wastewater from 2015 to 2020 was estimated to increase from 3875.30 Gg to 5212.75 Gg. A spatial transition of methane emission from wastewater was found and discussed in the present study.
-
Abstract Biome‐specific soil respiration (Rs) has important yet different roles in both the carbon cycle and climate change from regional to global scales. To date, no comparable studies related to global biome‐specific Rs have been conducted applying comprehensive global Rs databases. The goal of this study was to develop artificial neural network ( ANN ) models capable of spatially estimating global Rs and to evaluate the effects of interannual climate variations on 10 major biomes. We used 1976 annual Rs field records extracted from global Rs literature to train and test the ANN models. We determined that the best ANN model for predicting biome‐specific global annual Rs was the one that applied mean annual temperature ( MAT ), mean annual precipitation ( MAP ), and biome type as inputs ( r 2 = 0.60). The ANN models reported an average global Rs of 93.3 ± 6.1 Pg C yr −1 from 1960 to 2012 and an increasing trend in average global annual Rs of 0.04 Pg C yr −1 . Estimated annual Rs increased with increases in MAT and MAP in cropland, boreal forest, grassland, shrubland, and wetland biomes. Additionally, estimated annual Rs decreased with increases in MAT and increased with increases in MAP in desert and tundra biomes, and only significantly decreased with increases in MAT ( r 2 = 0.87) in the savannah biome. The developed biome‐specific global Rs database for global land and soil carbon models will aid in understanding the mechanisms underlying variations in soil carbon dynamics and in quantifying uncertainty in the global soil carbon cycle. , Key Points Predict biome‐specific global soil respiration from 1960 to 2012 using an artificial neural network model Prediction determined an average global soil respiration of 93.3 ± 6.1 Pg C yr −1 and an increasing trend of 0.04 Pg C yr −1 The 10 biome‐specific soil respiration estimates made it possible to trace different responses to global climate change in each biome
-
Abstract Forest above‐ground biomass (AGB) is often estimated by converting the observed tree size using allometric scaling between the dry weight and size of an organism. However, the variations in biomass allocation and scaling between tree crowns and stems due to survival competition during a tree's lifecycle remain unclear. This knowledge gap can improve the understanding of modelling tree biomass allometry because traditional allometries ignore the dynamics of allocation. Herein, we characterised allometric scaling using the dynamic ratio ( r ) of the stem biomass (SB) to AGB and a dynamic exponent. The allometric models were biologically parameterised by the r values for initial, intermediate and final ages rather than only a regression result. The scaling was tested using field measurements of 421 species and 2213 different‐sized trees in pantropical regions worldwide. We found that the scaling fluctuated with tree size, and this fluctuation was driven by the trade‐off relationship of biomass allocation between the tree crown and stem depending on the dynamic crown trait. The allometric scaling between SB and AGB varied from 0.8 to 1.0 for a tree during its entire lifecycle. The fluctuations presented a general law for the allometric scaling of the pantropical tree biomass and size. Our model quantified the trade‐off and explained 94.1% of the allometric relationship between the SB and AGB (93.8% of which between D 2 H and AGB) for pantropical forests, which resulted in a better fit than that of the traditional model. Considering the effects of the trade‐off on modelling, the actual biomass of large trees could be substantially greater than conventional estimates. These results highlight the importance of coupling growth mechanisms in modelling allometry and provide a theoretical foundation for better describing and predicting forest carbon accumulation.
- 1
- 2