Accéder au contenu Accéder au menu principal Accéder à la recherche
Accéder au contenu Accéder au menu principal
UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
UQAM logo
Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • Bibliographie
  • Accueil
  1. Vitrine des bibliographies
  2. Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  3. Résultats
  • Accueil

Votre recherche

Réinitialiser la recherche

Aide

L’interface de recherche est composée de trois sections : Rechercher, Explorer et Résultats. Celles-ci sont décrites en détail ci-dessous.

Vous pouvez lancer une recherche aussi bien à partir de la section Rechercher qu’à partir de la section Explorer.

Rechercher

Cette section affiche vos critères de recherche courants et vous permet de soumettre des mots-clés à chercher dans la bibliographie.

  • Chaque nouvelle soumission ajoute les mots-clés saisis à la liste des critères de recherche.
  • Pour lancer une nouvelle recherche plutôt qu’ajouter des mots-clés à la recherche courante, utilisez le bouton Réinitialiser la recherche, puis entrez vos mots-clés.
  • Pour remplacer un mot-clé déjà soumis, veuillez d’abord le retirer en décochant sa case à cocher, puis soumettre un nouveau mot-clé.
  • Vous pouvez contrôler la portée de votre recherche en choisissant où chercher. Les options sont :
    • Partout : repère vos mots-clés dans tous les champs des références bibliographiques ainsi que dans le contenu textuel des documents disponibles.
    • Dans les auteurs ou contributeurs : repère vos mots-clés dans les noms d’auteurs ou de contributeurs.
    • Dans les titres : repère vos mots-clés dans les titres.
    • Dans tous les champs : repère vos mots-clés dans tous les champs des notices bibliographiques.
    • Dans les documents : repère vos mots-clés dans le contenu textuel des documents disponibles.
  • Vous pouvez utiliser les opérateurs booléens avec vos mots-clés :
    • ET : repère les références qui contiennent tous les termes fournis. Ceci est la relation par défaut entre les termes séparés d’un espace. Par exemple, a b est équivalent à a ET b.
    • OU : repère les références qui contiennent n’importe lequel des termes fournis. Par exemple, a OU b.
    • SAUF : exclut les références qui contiennent le terme fourni. Par exemple, SAUF a.
    • Les opérateurs booléens doivent être saisis en MAJUSCULES.
  • Vous pouvez faire des groupements logiques (avec les parenthèses) pour éviter les ambiguïtés lors de la combinaison de plusieurs opérateurs booléens. Par exemple, (a OU b) ET c.
  • Vous pouvez demander une séquence exacte de mots (avec les guillemets droits), par exemple "a b c". Par défaut la différence entre les positions des mots est de 1, ce qui signifie qu’une référence sera repérée si elle contient les mots et qu’ils sont consécutifs. Une distance maximale différente peut être fournie (avec le tilde), par exemple "a b"~2 permet jusqu’à un terme entre a et b, ce qui signifie que la séquence a c b pourrait être repérée aussi bien que a b.
  • Vous pouvez préciser que certains termes sont plus importants que d’autres (avec l’accent circonflexe). Par exemple, a^2 b c^0.5 indique que a est deux fois plus important que b dans le calcul de pertinence des résultats, tandis que c est de moitié moins important. Ce type de facteur peut être appliqué à un groupement logique, par exemple (a b)^3 c.
  • La recherche par mots-clés est insensible à la casse et les accents et la ponctuation sont ignorés.
  • Les terminaisons des mots sont amputées pour la plupart des champs, tels le titre, le résumé et les notes. L’amputation des terminaisons vous évite d’avoir à prévoir toutes les formes possibles d’un mot dans vos recherches. Ainsi, les termes municipal, municipale et municipaux, par exemple, donneront tous le même résultat. L’amputation des terminaisons n’est pas appliquée au texte des champs de noms, tels auteurs/contributeurs, éditeur, publication.

Explorer

Cette section vous permet d’explorer les catégories associées aux références.

  • Les catégories peuvent servir à affiner votre recherche. Cochez une catégorie pour l’ajouter à vos critères de recherche. Les résultats seront alors restreints aux références qui sont associées à cette catégorie.
  • Dé-cochez une catégorie pour la retirer de vos critères de recherche et élargir votre recherche.
  • Les nombres affichés à côté des catégories indiquent combien de références sont associées à chaque catégorie considérant les résultats de recherche courants. Ces nombres varieront en fonction de vos critères de recherche, de manière à toujours décrire le jeu de résultats courant. De même, des catégories et des facettes entières pourront disparaître lorsque les résultats de recherche ne contiennent aucune référence leur étant associées.
  • Une icône de flèche () apparaissant à côté d’une catégorie indique que des sous-catégories sont disponibles. Vous pouvez appuyer sur l’icône pour faire afficher la liste de ces catégories plus spécifiques. Par la suite, vous pouvez appuyer à nouveau pour masquer la liste. L’action d’afficher ou de masquer les sous-catégories ne modifie pas vos critères de recherche; ceci vous permet de rapidement explorer l’arborescence des catégories, si désiré.

Résultats

Cette section présente les résultats de recherche. Si aucun critère de recherche n’a été fourni, elle montre toute la bibliographie (jusqu’à 20 références par page).

  • Chaque référence de la liste des résultats est un hyperlien vers sa notice bibliographique complète. À partir de la notice, vous pouvez continuer à explorer les résultats de recherche en naviguant vers les notices précédentes ou suivantes de vos résultats de recherche, ou encore retourner à la liste des résultats.
  • Des hyperliens supplémentaires, tels que Consulter le document ou Consulter sur [nom d’un site web], peuvent apparaître sous un résultat de recherche. Ces liens vous fournissent un accès rapide à la ressource, des liens que vous trouverez également dans la notice bibliographique.
  • Le bouton Résumés vous permet d’activer ou de désactiver l’affichage des résumés dans la liste des résultats de recherche. Toutefois, activer l’affichage des résumés n’aura aucun effet sur les résultats pour lesquels aucun résumé n’est disponible.
  • Diverses options sont fournies pour permettre de contrôler l’ordonnancement les résultats de recherche. L’une d’elles est l’option de tri par Pertinence, qui classe les résultats du plus pertinent au moins pertinent. Le score utilisé à cette fin prend en compte la fréquence des mots ainsi que les champs dans lesquels ils apparaissent. Par exemple, si un terme recherché apparaît fréquemment dans une référence ou est l’un d’un très petit nombre de termes utilisé dans cette référence, cette référence aura probablement un score plus élevé qu’une autre où le terme apparaît moins fréquemment ou qui contient un très grand nombre de mots. De même, le score sera plus élevé si un terme est rare dans l’ensemble de la bibliographie que s’il est très commun. De plus, si un terme de recherche apparaît par exemple dans le titre d’une référence, le score de cette référence sera plus élevé que s’il apparaissait dans un champ moins important tel le résumé.
  • Le tri par Pertinence n’est disponible qu’après avoir soumis des mots-clés par le biais de la section Rechercher.
  • Les catégories sélectionnées dans la section Explorer n’ont aucun effet sur le tri par pertinence. Elles ne font que filtrer la liste des résultats.
Dans les auteurs ou contributeurs
  • "Lei, XiangDong"

Résultats 16 ressources

PertinenceDate décroissanteDate croissanteAuteur A-ZAuteur Z-ATitre A-ZTitre Z-A
Résumés
  • Lei, X., Wang, W., & Peng, C. (2009). Relationships between stand growth and structural diversity in spruce-dominated forests in New Brunswick, Canada. Canadian Journal of Forest Research, 39(10), 1835–1847. https://doi.org/10.1139/X09-089

    Relationships between stand growth and structural diversity were examined in spruce-dominated forests in New Brunswick, Canada. Net growth, survivor growth, mortality, and recruitment represented stand growth, and tree species, size, and height diversity indices were used to describe structural diversity. Mixed-effects second-order polynomial regressions were employed for statistical analysis. Results showed stand structural diversity had a significant positive effect on net growth and survivor growth by volume but not on mortality and recruitment. Among the tested diversity indices, the integrated diversity of tree species and height contributed most to stand net growth and survivor growth. Structural diversity showed increasing trends throughout the developmental stages from young, immature, mature, and overmature forest stands. This relationship between stand growth and structural diversity may be due to stands featuring high structural diversity that enhances niche complementarities of resource use because trees exist within different horizontal and vertical layers, and strong competition resulted from size differences among trees. It is recommended to include effects of species and structural diversity in forest growth modeling initiatives. Moreover, uneven-aged stand management in conjunction with selective or partial cutting to maintain high structural diversity is also recommended to maintain biodiversity and rapid growth in spruce-dominated forests.

    Consulter sur www.nrcresearchpress.com
  • Lei, X., Peng, C., Wang, H., & Zhou, X. (2009). Individual height–diameter models for young black spruce ( Picea mariana ) and jack pine ( Pinus banksiana ) plantations in New Brunswick, Canada. The Forestry Chronicle, 85(1), 43–56. https://doi.org/10.5558/tfc85043-1

    Historically, height–diameter models have mainly been developed for mature trees; consequently, few height–diameter models have been calibrated for young forest stands. In order to develop equations predicting the height of trees with small diameters, 46 individual height–diameter models were fitted and tested in young black spruce (Picea mariana) and jack pine (Pinus banksiana) plantations between the ages of 4 to 8 years, measured from 182 plots in New Brunswick, Canada. The models were divided into 2 groups: a diameter group and a second group applying both diameter and additional stand- or tree-level variables (composite models). There was little difference in predicting tree height among the former models (Group I) while the latter models (Group II) generally provided better prediction. Based on goodness of fit (R 2 and MSE), prediction ability (the bias and its associated prediction and tolerance intervals in absolute and relative terms), and ease of application, 2 Group II models were recommended for predicting individual tree heights within young black spruce and jack pine forest stands. Mean stand height was required for application of these models. The resultant tolerance intervals indicated that most errors (95%) associated with height predictions would be within the following limits (a 95% confidence level): [-0.54 m, 0.54 m] or [-14.7%, 15.9%] for black spruce and [-0.77 m, 0.77 m] or [-17.1%, 18.6%] for jack pine. The recommended models are statistically reliable for growth and yield applications, regeneration assessment and management planning. Key words: composite model, linear model, model calibration, model validation, prediction interval, tolerance interval

    Consulter sur pubs.cif-ifc.org
  • Lei, X., Peng, C., Tian, D., & Sun, J. (2007). Meta-analysis and its application in global change research. Chinese Science Bulletin, 52(3), 289–302. https://doi.org/10.1007/s11434-007-0046-y
    Consulter sur link.springer.com
  • Wang, W., Lei, X., Ma, Z., Kneeshaw, D. D., & Peng, C. (2011). Positive Relationship between Aboveground Carbon Stocks and Structural Diversity in Spruce-Dominated Forest Stands in New Brunswick, Canada. Forest Science, 57(6), 506–515. https://doi.org/10.1093/forestscience/57.6.506

    Abstract Maintaining both the structure and functionality of forest ecosystems is a primary goal of forest management. In this study, relationships between structural diversity and aboveground stand carbon (C) stocks were examined in spruce-dominated forests in New Brunswick, Canada. Tree species, size, and height diversity indices as well as a combination of these diversity indices were used to correlate aboveground C stocks. Multiple linear regressions were subsequently used to quantify the relationships between these indices and aboveground C stocks, and partial correlation analysis was also adopted to remove the effects of other explanatory variables. Results show that stand structural diversity has a significant positive effect on aboveground C stocks even though the relationship is weak overall. Positive relationships observed between the diversity indices and aboveground C stocks support the hypothesis that increased structural diversity enhances aboveground C storage capacity. This occurs because complex forest structures allow for greater light infiltration and promote a more efficient resource use by trees, leading to an increase in biomass and C production. Mixed tolerant species composition and uneven-aged stand management in conjunction with selection or partial cutting to maintain high structural diversity is therefore recommended to preserve biodiversity and C stocks in spruce-dominated forests.

    Consulter sur academic.oup.com
  • Lei, X., Lu, Y., Peng, C., Zhang, X., Chang, J., & Hong, L. (2007). Growth and structure development of semi-natural larch-spruce-fir (Larix olgensis–Picea jezoensis–Abies nephrolepis) forests in northeast China: 12-year results after thinning. Forest Ecology and Management, 240(1–3), 165–177. https://doi.org/10.1016/j.foreco.2006.12.019
    Consulter sur linkinghub.elsevier.com
  • Zhao, S., Peng, C., Jiang, H., Tian, D., Lei, X., & Zhou, X. (2006). Land use change in Asia and the ecological consequences. Ecological Research, 21(6), 890–896. https://doi.org/10.1007/s11284-006-0048-2

    Abstract Viewed within a historical context, Asia has experienced dramatic land transformations, and currently more than 50% of Asian land area is under agriculture. The consequences of this transformation are manifold. Southeast Asia has the highest deforestation rate of any major tropical region. Many of the world's large rivers and lakes in Asia have been heavily degraded. About 11 of 19 world megacities with more than 10 million inhabitants are in Asia. These land use activities have resulted in substantial negative ecological consequences, including increased anthropogenic CO 2 emissions, deteriorated air and water quality, alteration of regional climate, an increase of disease and a loss of biodiversity. Although land use occurs at the local level, it has the potential to cause ecological impact across local, regional and global scales. Reducing the negative environmental impacts of land use change while maintaining economic viability and social acceptability is an major challenge for most developing countries in Asia.

    Consulter sur esj-journals.onlinelibrary.wiley.com
  • Zhou, X., Lei, X., Liu, C., Huang, H., Zhou, C., & Peng, C. (2019). Re-estimating the changes and ranges of forest biomass carbon in China during the past 40 years. Forest Ecosystems, 6(1), 51. https://doi.org/10.1186/s40663-019-0208-9

    Abstract Background In recent decades the future of global forests has been a matter of increasing concern, particularly in relation to the threat of forest ecosystem responses under potential climate change. To the future predictions of these responses, the current forest biomass carbon storage (FCS) should first be clarified as much as possible, especially at national scales. However, few studies have introduced how to verify an FCS estimate by delimiting the reasonable ranges. This paper addresses an estimation of national FCS and its verification using two-step process to narrow the uncertainty. Our study focuses on a methodology for reducing the uncertainty resulted by converting from growing stock volume to above- and below-ground biomass (AB biomass), so as to eliminate the significant bias in national scale estimations. Methods We recommend splitting the estimation into two parts, one part for stem and the other part for AB biomass to preclude possible significant bias. Our method estimates the stem biomass from volume and wood density (WD), and converts the AB biomass from stem biomass by using allometric relationships. Results Based on the presented two-step process, the estimation of China’s FCS is performed as an example to explicate how to infer the ranges of national FCS. The experimental results demonstrate a national FCS estimation within the reasonable ranges (relative errors: + 4.46% and − 4.44%), e.g., 5.6–6.1 PgC for China’s forest ecosystem at the beginning of the 2010s. These ranges are less than 0.52 PgC for confirming each FCS estimate of different periods during the last 40 years. In addition, our results suggest the upper-limits by specifying a highly impractical value of WD (0.7 t∙m − 3 ) on the national scale. As a control reference, this value decides what estimate is impossible to achieve for the FCS estimates. Conclusions Presented methodological analysis highlights the possibility to determine a range that the true value could be located in. The two-step process will help to verify national FCS and also to reduce uncertainty in related studies. While the true value of national FCS is immeasurable, our work should motivate future studies that explore new estimations to approach the true value by narrowing the uncertainty in FCS estimations on national and global scales.

    Consulter sur forestecosyst.springeropen.com
  • Liu, C., Zhou, X., Lei, X., Huang, H., Zhou, C., Peng, C., & Wang, X. (2019). Separating Regressions for Model Fitting to Reduce the Uncertainty in Forest Volume-Biomass Relationship. Forests, 10(8), 658. https://doi.org/10.3390/f10080658

    The method of forest biomass estimation based on a relationship between the volume and biomass has been applied conventionally for estimating stand above- and below-ground biomass (SABB, t ha−1) from mean growing stock volume (m3 ha−1). However, few studies have reported on the diagnosis of the volume-SABB equations fitted using field data. This paper addresses how to (i) check parameters of the volume-SABB equations, and (ii) reduce the bias while building these equations. In our analysis, all equations were applied based on the measurements of plots (biomass or volume per hectare) rather than individual trees. The volume-SABB equation is re-expressed by two Parametric Equations (PEs) for separating regressions. Stem biomass is an intermediate variable (parametric variable) in the PEs, of which one is established by regressing the relationship between stem biomass and volume, and the other is created by regressing the allometric relationship of stem biomass and SABB. A graphical analysis of the PEs proposes a concept of “restricted zone,” which helps to diagnose parameters of the volume-SABB equations in regression analyses of field data. The sampling simulations were performed using pseudo data (artificially generated in order to test a model) for the model test. Both analyses of the regression and simulation demonstrate that the wood density impacts the parameters more than the allometric relationship does. This paper presents an applicable method for testing the field data using reasonable wood densities, restricting the error in field data processing based on limited field plots, and achieving a better understanding of the uncertainty in building those equations.

    Consulter sur www.mdpi.com
  • Wang, W., Peng, C., Zhang, S. Y., Zhou, X., Larocque, G. R., Kneeshaw, D. D., & Lei, X. (2011). Development of TRIPLEX-Management model for simulating the response of forest growth to pre-commercial thinning. Ecological Modelling, 222(14), 2249–2261. https://doi.org/10.1016/j.ecolmodel.2010.09.019
    Consulter sur linkinghub.elsevier.com
  • Xiang, W., Liu, S., Deng, X., Shen, A., Lei, X., Tian, D., Zhao, M., & Peng, C. (2011). General allometric equations and biomass allocation of Pinus massoniana trees on a regional scale in southern China. Ecological Research, 26(4), 697–711. https://doi.org/10.1007/s11284-011-0829-0

    Abstract Applying allometric equations in combination with forest inventory data is an effective approach to use when qualifying forest biomass and carbon storage on a regional scale. The objectives of this study were to (1) develop general allometric tree component biomass equations and (2) investigate tree biomass allocation patterns for Pinus massoniana , a principal tree species native to southern China, by applying 197 samples across 20 site locations. The additive allometric equations utilized to compute stem, branch, needle, root, aboveground, and total tree biomass were developed by nonlinear seemingly unrelated regression. Results show that the relative proportion of stem biomass to tree biomass increased while the contribution of canopy biomass to tree biomass decreased as trees continued to grow through time. Total root biomass was a large biomass pool in itself, and its relative proportion to tree biomass exhibited a slight increase with tree growth. Although equations employing stem diameter at breast height (dbh) alone as a predictor could accurately predict stem, aboveground, root, and total tree biomass, they were poorly fitted to predict the canopy biomass component. The inclusion of the tree height ( H ) variable either slightly improved or did not in any way increase model fitness. Validation results demonstrate that these equations are suitable to estimate stem, aboveground, and total tree biomass across a broad range of P . massoniana stands on a regional scale.

    Consulter sur esj-journals.onlinelibrary.wiley.com
  • Zhou, X., Lei, X., Peng, C., Wang, W., Zhou, C., Liu, C., & Liu, Z. (2016). Correcting the overestimate of forest biomass carbon on the national scale. Methods in Ecology and Evolution, 7(4), 447–455. https://doi.org/10.1111/2041-210X.12505

    Summary For decades, researchers have thought it was difficult to remove the uncertainty from the estimates of forest carbon storage and its changes on national sales. This is not only because of stochasticity in the data but also the bias to overcome in the computations. Most studies of the estimation, however, ignore quantitative analyses for the latter uncertainty. This bias primarily results from the widely used volume‐biomass method via scaling up forest biomass from limited sample plots to large areas. This paper addresses (i) the mechanism of scaling‐up error occurrence, and (ii) the quantitative effects of the statistical factors on the error. The error compensators were derived, and expressed by ternary functions with three variables: expectation, variance and the power in the volume‐biomass equation. This is based on analysing the effect of power‐law function convexity on scaling‐up error by solving the difference of both sides of the weighted Jensen inequality. The simulated data and the national forest inventory of China were used for algorithm testing and application, respectively. Scaling‐up error occurrence stems primarily from an effect of the distribution heterogeneity of volume density on the total biomass amount, and secondarily from the extent of function nonlinearities. In our experiments, on average 94·2% of scaling‐up error can be reduced for the statistical populations of forest stands in a region. China's forest biomass carbon was estimated as approximately 6·0 PgC or less at the beginning of the 2010s after on average 1·1% error compensation. The results of both the simulated data experiment and national‐scale estimation suggest that the biomass is overestimated for young forests more than others. It implies a necessity to compensate scaling‐up error, especially for the areas going through extensive afforestation and reforestation in past decades. This study highlights the importance of understanding how both the function nonlinearity and the statistics of the variables quantitatively affect the scaling‐up error. Generally, the presented methods will help to translate fine‐scale ecological relationships to estimate coarser scale ecosystem properties by correcting aggregation errors.

    Consulter sur besjournals.onlinelibrary.wiley.com
  • Zhou, X., Lei, X., Peng, C., Wang, W., Zhou, C., Liu, C., & Liu, Z. (2016). Correcting the overestimate of forest biomass carbon on the national scale. Methods in Ecology and Evolution, 7(4), 447–455. https://doi.org/10.1111/2041-210X.12505

    Summary For decades, researchers have thought it was difficult to remove the uncertainty from the estimates of forest carbon storage and its changes on national sales. This is not only because of stochasticity in the data but also the bias to overcome in the computations. Most studies of the estimation, however, ignore quantitative analyses for the latter uncertainty. This bias primarily results from the widely used volume‐biomass method via scaling up forest biomass from limited sample plots to large areas. This paper addresses (i) the mechanism of scaling‐up error occurrence, and (ii) the quantitative effects of the statistical factors on the error. The error compensators were derived, and expressed by ternary functions with three variables: expectation, variance and the power in the volume‐biomass equation. This is based on analysing the effect of power‐law function convexity on scaling‐up error by solving the difference of both sides of the weighted Jensen inequality. The simulated data and the national forest inventory of China were used for algorithm testing and application, respectively. Scaling‐up error occurrence stems primarily from an effect of the distribution heterogeneity of volume density on the total biomass amount, and secondarily from the extent of function nonlinearities. In our experiments, on average 94·2% of scaling‐up error can be reduced for the statistical populations of forest stands in a region. China's forest biomass carbon was estimated as approximately 6·0 PgC or less at the beginning of the 2010s after on average 1·1% error compensation. The results of both the simulated data experiment and national‐scale estimation suggest that the biomass is overestimated for young forests more than others. It implies a necessity to compensate scaling‐up error, especially for the areas going through extensive afforestation and reforestation in past decades. This study highlights the importance of understanding how both the function nonlinearity and the statistics of the variables quantitatively affect the scaling‐up error. Generally, the presented methods will help to translate fine‐scale ecological relationships to estimate coarser scale ecosystem properties by correcting aggregation errors.

    Consulter sur besjournals.onlinelibrary.wiley.com
  • Jiao, W., Wang, W., Peng, C., Lei, X., Ruan, H., Li, H., Yang, Y., Grabarnik, P., & Shanin, V. (2022). Improving a Process-Based Model to Simulate Forest Carbon Allocation under Varied Stand Density. Forests, 13(8), 1212. https://doi.org/10.3390/f13081212

    Carbon allocation is an important mechanism through which plants respond to environmental changes. To enhance our understanding of maximizing carbon uptake by controlling planting densities, the carbon allocation module of a process-based model, TRIPLEX-Management, was modified and improved by introducing light, soil water, and soil nitrogen availability factors to quantify the allocation coefficients for different plant organs. The modified TRIPLEX-Management model simulation results were verified against observations from northern Jiangsu Province, China, and then the model was used to simulate dynamic changes in forest carbon under six density scenarios (200, 400, 600, 800, 1000, and 1200 stems ha−1). The mean absolute errors between the predicted and observed variables of the mean diameter at breast height, mean height, and estimated aboveground biomass ranged from 15.0% to 26.6%, and were lower compared with the original model simulated results, which ranged from 24.4% to 60.5%. The normalized root mean square errors ranged from 0.2 to 0.3, and were lower compared with the original model simulated results, which ranged from 0.3 to 0.6. The Willmott index between the predicted and observed variables also varied from 0.5 to 0.8, indicating that the modified TRIPLEX-Management model could accurately simulate the dynamic changes in poplar (Populus spp.) plantations with different densities in northern Jiangsu Province. The density scenario results showed that the leaf and fine root allocation coefficients decreased with the increase in stand density, while the stem allocation increased. Overall, our study showed that the optimum stand density (approximately 400 stems ha−1) could reach the highest aboveground biomass for poplar stands and soil organic carbon storage, leading to higher ecological functions related to carbon sequestration without sacrificing wood production in an economical way in northern Jiangsu Province. Therefore, reasonable density control with different soil and climate conditions should be recommended to maximize carbon sequestration.

    Consulter sur www.mdpi.com
  • Peng, C., Ma, Z., Lei, X., Zhu, Q., Chen, H., Wang, W., Liu, S., Li, W., Fang, X., & Zhou, X. (2011). A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nature Climate Change, 1(9), 467–471. https://doi.org/10.1038/nclimate1293
    Consulter sur www.nature.com
  • Han, M., Feng, H., Peng, C., Lei, X., Xue, J., Malghani, S., Ma, X., Song, X., & Wang, W. (2022). Spatiotemporal patterns and drivers of stem methane flux from two poplar forests with different soil textures. Tree Physiology, 42(12), 2454–2467. https://doi.org/10.1093/treephys/tpac091

    Abstract In forest ecosystems, the majority of methane (CH4) research focuses on soils, whereas tree stem CH4 flux and driving factors remain poorly understood. We measured the in situ stem CH4 flux using the static chamber–gas chromatography method at different heights in two poplar (Populus spp.) forests with separate soil textures. We evaluated the relationship between stem CH4 fluxes and environmental factors with linear mixed models and estimated the tree CH4 emission rate at the stand level. Our results showed that poplar stems were a net source of atmospheric CH4. The mean stem CH4 emission rates were 97.51 ± 6.21 μg·m−2·h−1 in Sihong and 67.04 ± 5.64 μg·m−2·h−1 in Dongtai. The stem CH4 emission rate in Sihong with clay loam soils was significantly higher (P < 0.001) than that in Dongtai with sandy loam soils. The stem CH4 emission rate also showed a seasonal variation, minimum in winter and maximum in summer. The stem CH4 emission rate generally decreased with increasing sampling height. Although the differences in CH4 emission rates between stem heights were significant in the annual averages, these differences were driven by differences observed in the summer. Stem CH4 emission rates were significantly and positively correlated with air temperature (P < 0.001), relative humidity (P < 0.001), soil water content (P < 0.001) and soil CH4 flux (P < 0.001). At these sites, the soil emitted CH4 to the atmosphere in summer (mainly from June to September) but absorbed CH4 from the atmosphere during the other season. At the stand level, tree CH4 emissions accounted for 2–35.4% of soil CH4 uptake. Overall, tree stem CH4 efflux could be an important component of the forest CH4 budget. Therefore, it is necessary to conduct more in situ monitoring of stem CH4 flux to accurately estimate the CH4 budget in the future.

    Consulter sur academic.oup.com
  • Ouyang, S., Xiang, W., Wang, X., Xiao, W., Chen, L., Li, S., Sun, H., Deng, X., Forrester, D. I., Zeng, L., Lei, P., Lei, X., Gou, M., & Peng, C. (2019). Effects of stand age, richness and density on productivity in subtropical forests in China. Journal of Ecology, 107(5), 2266–2277. https://doi.org/10.1111/1365-2745.13194

    Abstract Forest productivity may be determined not only by biodiversity but also by environmental factors and stand structure attributes. However, the relative importance of these factors in determining productivity is still controversial for subtropical forests. Based on a large dataset from 600 permanent forest inventory plots across subtropical China, we examined the relationship between biodiversity and forest productivity and tested whether stand structural attributes (stand density in terms of trees per ha, age and tree size) and environmental factors (climate and site conditions) had larger effects on productivity. Furthermore, we quantified the relative importance of environmental factors, stand structure and diversity in determining forest productivity. Diversity, together with stand structure and site conditions, regulated the variability in forest productivity. The relationship between diversity and forest productivity did not vary along environmental gradients. Stand density and age were more important modulators of forest productivity than diversity. Synthesis . Diversity had significant and positive effects on productivity in species‐rich subtropical forests, but the effects of stand density and age were also important. Our work highlights that while biodiversity conservation is often important, the regulation of stand structure can be even more important to maintain high productivity in subtropical forests.

    Consulter sur besjournals.onlinelibrary.wiley.com
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Flux web personnalisé
Dernière mise à jour depuis la base de données : 17/06/2025 05:00 (UTC)

Explorer

Auteur·e·s

  • Peng, Changhui (14)

Type de ressource

  • Article de revue (16)

Année de publication

  • Entre 2000 et 2025 (16)
    • Entre 2000 et 2009 (5)
      • 2006 (1)
      • 2007 (2)
      • 2009 (2)
    • Entre 2010 et 2019 (9)
      • 2011 (4)
      • 2016 (2)
      • 2019 (3)
    • Entre 2020 et 2025 (2)
      • 2022 (2)

Explorer

UQAM - Université du Québec à Montréal

  • Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • bibliotheques@uqam.ca

Accessibilité Web