Votre recherche
Résultats 28 ressources
-
Abstract. A fundamental issue associated with the dynamical downscaling technique using limited-area models is related to the presence of a “spatial spin-up” belt close to the lateral boundaries where small-scale features are only partially developed. Here, we introduce a method to identify the distance from the border that is affected by the spatial spin-up (i.e., the spatial spin-up distance) of the precipitation field in convection-permitting model (CPM) simulations. Using a domain over eastern North America, this new method is applied to several simulations that differ on the nesting approach (single or double nesting) and the 3-D variables used to drive the CPM simulation. Our findings highlight three key points. Firstly, when using a single nesting approach, the spin-up distance from lateral boundaries can extend up to 300 km (around 120 CPM grid points), varying across seasons, boundaries and driving variables. Secondly, the greatest spin-up distances occur in winter at the western and southern boundaries, likely due to strong atmospheric inflow during these seasons. Thirdly, employing a double nesting approach with a comprehensive set of microphysical variables to drive CPM simulations offers clear advantages. The computational gains from reducing spatial spin-up outweigh the costs associated with the more demanding intermediate simulation of the double nesting. These results have practical implications for optimizing CPM simulation configurations, encompassing domain selection and driving strategies.
-
Abstract This study investigates the seasonality of near‐surface wind speeds associated with extratropical cyclones (ETCs) over northeastern North America using a global reanalysis data set during 1979–2020. As opposed to most studies that emphasize winter storms, ETCs during the fall exhibit significantly stronger 10‐m winds over this region due to the slightly stronger continental cyclones and significantly weaker low‐level stability during that time of the year. Also, ETCs favor inland lakes and Hudson Bay during the low‐ice‐content fall season, leading to lower surface roughness. Combining these results, we derive simple linear regressions to predict the 10‐m wind speed given three variables: 850‐hPa wind speed, low‐level Richardson number, and surface roughness length. This formula captures the observed seasonality and serves as a valuable tool for cyclone near‐surface wind risk assessment. , Plain Language Summary Extratropical cyclones can bring powerful winds that can cause severe damage to infrastructure. We find that cyclones with severe winds are the most frequent in the fall season over continental northeastern North America. Three reasons are found responsible: stronger continental cyclones, weaker low‐level atmospheric stability, and the lower surface roughness over lakes and Hudson Bay, where cyclones frequently occur in fall. A simple formula that can effectively assess the near‐surface wind speeds associated with cyclones is derived based on these results. , Key Points Extratropical‐cyclone‐associated 10‐m wind speeds are the strongest in the fall season over northeastern North America Besides stronger continental cyclones and 850‐hPa winds, weaker low‐level stability in fall favors stronger 10‐m wind speeds in this region Linear regression using 850‐hPa wind, Richardson number, and surface roughness well predicts cyclones' 10‐m wind speeds and seasonality
-
Abstract This study evaluates the added value in the representation of surface climate variables from an ensemble of regional climate model (RCM) simulations by comparing the relative skill of the RCM simulations and their driving data over a wide range of RCM experimental setups and climate statistics. The methodology is specifically designed to compare results across different variables and metrics, and it incorporates a rigorous approach to separate the added value occurring at different spatial scales. Results show that the RCMs' added value strongly depends on the type of driving data, the climate variable, and the region of interest but depends rather weakly on the choice of the statistical measure, the season, and the RCM physical configuration. Decomposing climate statistics according to different spatial scales shows that improvements are coming from the small scales when considering the representation of spatial patterns, but from the large‐scale contribution in the case of absolute values. Our results also show that a large part of the added value can be attained using some simple postprocessing methods. , Key Points A rigorous methodology that allows evaluating the overall benefits of high‐resolution simulations The most reliable source of added value is the better representation of the spatial variability Substantial added value can also be attained using simple postprocessing methods
-
Abstract. We use a high-resolution regional climate model to investigate the changes in Atlantic tropical cyclone (TC) activity during the period of the mid-Holocene (MH: 6000 years BP) with a larger amplitude of the seasonal cycle relative to today. This period was characterized by increased boreal summer insolation over the Northern Hemisphere, a vegetated Sahara and reduced airborne dust concentrations. A set of sensitivity experiments was conducted in which solar insolation, vegetation and dust concentrations were changed in turn to disentangle their impacts on TC activity in the Atlantic Ocean. Results show that the greening of the Sahara and reduced dust loadings (MHGS+RD) lead to a larger increase in the number of Atlantic TCs (27 %) relative to the pre-industrial (PI) climate than the orbital forcing alone (MHPMIP; 9 %). The TC seasonality is also highly modified in the MH climate, showing a decrease in TC activity during the beginning of the hurricane season (June to August), with a shift of its maximum towards October and November in the MHGS+RD experiment relative to PI. MH experiments simulate stronger hurricanes compared to PI, similar to future projections. Moreover, they suggest longer-lasting cyclones relative to PI. Our results also show that changes in the African easterly waves are not relevant in altering the frequency and intensity of TCs, but they may shift the location of their genesis. This work highlights the importance of considering vegetation and dust changes over the Sahara region when investigating TC activity under a different climate state.
-
Abstract An important source of model uncertainty in climate models arises from unconfined model parameters in physical parameterizations. These parameters are commonly estimated on the basis of manual adjustments (expert tuning), which carries the risk of overtuning the parameters for a specific climate region or time period. This issue is particularly germane in the case of regional climate models (RCMs), which are often developed and used in one or a few geographical regions only. This study addresses the role of objective parameter calibration in this context. Using a previously developed objective calibration methodology, an RCM is calibrated over two regions (Europe and North America) and is used to investigate the transferability of the results. A total of eight different model parameters are calibrated, using a metamodel to account for parameter interactions. The study demonstrates that the calibration is effective in reducing model biases in both domains. For Europe, this concerns in particular a pronounced reduction of the summer warm bias and the associated overestimation of interannual temperature variability that have persisted through previous expert tuning efforts and are common in many global and regional climate models. The key process responsible for this improvement is an increased hydraulic conductivity. Higher hydraulic conductivity increases the water availability at the land surface and leads to increased evaporative cooling, stronger low cloud formation, and associated reduced incoming shortwave radiation. The calibrated parameter values are found to be almost identical for both domains; that is, the parameter calibration is transferable between the two regions. This is a promising result and indicates that models may be more universal than previously considered.
- 1
- 2