Accéder au contenu Accéder au menu principal Accéder à la recherche
Accéder au contenu Accéder au menu principal
UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
UQAM logo
Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • Bibliographie
  • Accueil
  1. Vitrine des bibliographies
  2. Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  3. Résultats
  • Accueil

Votre recherche

Réinitialiser la recherche

Aide

L’interface de recherche est composée de trois sections : Rechercher, Explorer et Résultats. Celles-ci sont décrites en détail ci-dessous.

Vous pouvez lancer une recherche aussi bien à partir de la section Rechercher qu’à partir de la section Explorer.

Rechercher

Cette section affiche vos critères de recherche courants et vous permet de soumettre des mots-clés à chercher dans la bibliographie.

  • Chaque nouvelle soumission ajoute les mots-clés saisis à la liste des critères de recherche.
  • Pour lancer une nouvelle recherche plutôt qu’ajouter des mots-clés à la recherche courante, utilisez le bouton Réinitialiser la recherche, puis entrez vos mots-clés.
  • Pour remplacer un mot-clé déjà soumis, veuillez d’abord le retirer en décochant sa case à cocher, puis soumettre un nouveau mot-clé.
  • Vous pouvez contrôler la portée de votre recherche en choisissant où chercher. Les options sont :
    • Partout : repère vos mots-clés dans tous les champs des références bibliographiques ainsi que dans le contenu textuel des documents disponibles.
    • Dans les auteurs ou contributeurs : repère vos mots-clés dans les noms d’auteurs ou de contributeurs.
    • Dans les titres : repère vos mots-clés dans les titres.
    • Dans tous les champs : repère vos mots-clés dans tous les champs des notices bibliographiques.
    • Dans les documents : repère vos mots-clés dans le contenu textuel des documents disponibles.
  • Vous pouvez utiliser les opérateurs booléens avec vos mots-clés :
    • ET : repère les références qui contiennent tous les termes fournis. Ceci est la relation par défaut entre les termes séparés d’un espace. Par exemple, a b est équivalent à a ET b.
    • OU : repère les références qui contiennent n’importe lequel des termes fournis. Par exemple, a OU b.
    • SAUF : exclut les références qui contiennent le terme fourni. Par exemple, SAUF a.
    • Les opérateurs booléens doivent être saisis en MAJUSCULES.
  • Vous pouvez faire des groupements logiques (avec les parenthèses) pour éviter les ambiguïtés lors de la combinaison de plusieurs opérateurs booléens. Par exemple, (a OU b) ET c.
  • Vous pouvez demander une séquence exacte de mots (avec les guillemets droits), par exemple "a b c". Par défaut la différence entre les positions des mots est de 1, ce qui signifie qu’une référence sera repérée si elle contient les mots et qu’ils sont consécutifs. Une distance maximale différente peut être fournie (avec le tilde), par exemple "a b"~2 permet jusqu’à un terme entre a et b, ce qui signifie que la séquence a c b pourrait être repérée aussi bien que a b.
  • Vous pouvez préciser que certains termes sont plus importants que d’autres (avec l’accent circonflexe). Par exemple, a^2 b c^0.5 indique que a est deux fois plus important que b dans le calcul de pertinence des résultats, tandis que c est de moitié moins important. Ce type de facteur peut être appliqué à un groupement logique, par exemple (a b)^3 c.
  • La recherche par mots-clés est insensible à la casse et les accents et la ponctuation sont ignorés.
  • Les terminaisons des mots sont amputées pour la plupart des champs, tels le titre, le résumé et les notes. L’amputation des terminaisons vous évite d’avoir à prévoir toutes les formes possibles d’un mot dans vos recherches. Ainsi, les termes municipal, municipale et municipaux, par exemple, donneront tous le même résultat. L’amputation des terminaisons n’est pas appliquée au texte des champs de noms, tels auteurs/contributeurs, éditeur, publication.

Explorer

Cette section vous permet d’explorer les catégories associées aux références.

  • Les catégories peuvent servir à affiner votre recherche. Cochez une catégorie pour l’ajouter à vos critères de recherche. Les résultats seront alors restreints aux références qui sont associées à cette catégorie.
  • Dé-cochez une catégorie pour la retirer de vos critères de recherche et élargir votre recherche.
  • Les nombres affichés à côté des catégories indiquent combien de références sont associées à chaque catégorie considérant les résultats de recherche courants. Ces nombres varieront en fonction de vos critères de recherche, de manière à toujours décrire le jeu de résultats courant. De même, des catégories et des facettes entières pourront disparaître lorsque les résultats de recherche ne contiennent aucune référence leur étant associées.
  • Une icône de flèche () apparaissant à côté d’une catégorie indique que des sous-catégories sont disponibles. Vous pouvez appuyer sur l’icône pour faire afficher la liste de ces catégories plus spécifiques. Par la suite, vous pouvez appuyer à nouveau pour masquer la liste. L’action d’afficher ou de masquer les sous-catégories ne modifie pas vos critères de recherche; ceci vous permet de rapidement explorer l’arborescence des catégories, si désiré.

Résultats

Cette section présente les résultats de recherche. Si aucun critère de recherche n’a été fourni, elle montre toute la bibliographie (jusqu’à 20 références par page).

  • Chaque référence de la liste des résultats est un hyperlien vers sa notice bibliographique complète. À partir de la notice, vous pouvez continuer à explorer les résultats de recherche en naviguant vers les notices précédentes ou suivantes de vos résultats de recherche, ou encore retourner à la liste des résultats.
  • Des hyperliens supplémentaires, tels que Consulter le document ou Consulter sur [nom d’un site web], peuvent apparaître sous un résultat de recherche. Ces liens vous fournissent un accès rapide à la ressource, des liens que vous trouverez également dans la notice bibliographique.
  • Le bouton Résumés vous permet d’activer ou de désactiver l’affichage des résumés dans la liste des résultats de recherche. Toutefois, activer l’affichage des résumés n’aura aucun effet sur les résultats pour lesquels aucun résumé n’est disponible.
  • Diverses options sont fournies pour permettre de contrôler l’ordonnancement les résultats de recherche. L’une d’elles est l’option de tri par Pertinence, qui classe les résultats du plus pertinent au moins pertinent. Le score utilisé à cette fin prend en compte la fréquence des mots ainsi que les champs dans lesquels ils apparaissent. Par exemple, si un terme recherché apparaît fréquemment dans une référence ou est l’un d’un très petit nombre de termes utilisé dans cette référence, cette référence aura probablement un score plus élevé qu’une autre où le terme apparaît moins fréquemment ou qui contient un très grand nombre de mots. De même, le score sera plus élevé si un terme est rare dans l’ensemble de la bibliographie que s’il est très commun. De plus, si un terme de recherche apparaît par exemple dans le titre d’une référence, le score de cette référence sera plus élevé que s’il apparaissait dans un champ moins important tel le résumé.
  • Le tri par Pertinence n’est disponible qu’après avoir soumis des mots-clés par le biais de la section Rechercher.
  • Les catégories sélectionnées dans la section Explorer n’ont aucun effet sur le tri par pertinence. Elles ne font que filtrer la liste des résultats.
Dans les auteurs ou contributeurs
  • "Kneeshaw, Daniel"

Résultats 17 ressources

PertinenceDate décroissanteDate croissanteAuteur A-ZAuteur Z-ATitre A-ZTitre Z-A
Résumés
  • Wang, W., Lei, X., Ma, Z., Kneeshaw, D. D., & Peng, C. (2011). Positive Relationship between Aboveground Carbon Stocks and Structural Diversity in Spruce-Dominated Forest Stands in New Brunswick, Canada. Forest Science, 57(6), 506–515. https://doi.org/10.1093/forestscience/57.6.506

    Abstract Maintaining both the structure and functionality of forest ecosystems is a primary goal of forest management. In this study, relationships between structural diversity and aboveground stand carbon (C) stocks were examined in spruce-dominated forests in New Brunswick, Canada. Tree species, size, and height diversity indices as well as a combination of these diversity indices were used to correlate aboveground C stocks. Multiple linear regressions were subsequently used to quantify the relationships between these indices and aboveground C stocks, and partial correlation analysis was also adopted to remove the effects of other explanatory variables. Results show that stand structural diversity has a significant positive effect on aboveground C stocks even though the relationship is weak overall. Positive relationships observed between the diversity indices and aboveground C stocks support the hypothesis that increased structural diversity enhances aboveground C storage capacity. This occurs because complex forest structures allow for greater light infiltration and promote a more efficient resource use by trees, leading to an increase in biomass and C production. Mixed tolerant species composition and uneven-aged stand management in conjunction with selection or partial cutting to maintain high structural diversity is therefore recommended to preserve biodiversity and C stocks in spruce-dominated forests.

    Consulter sur academic.oup.com
  • Wang, W., Peng, C., Kneeshaw, D. D., Larocque, G. R., & Luo, Z. (2012). Drought-induced tree mortality: ecological consequences, causes, and modeling. Environmental Reviews, 20(2), 109–121. https://doi.org/10.1139/a2012-004

    Drought-induced tree mortality, which rapidly alters forest ecosystem composition, structure, and function, as well as the feedbacks between the biosphere and climate, has occurred worldwide over the past few decades, and is expected to increase pervasively as climate change progresses. The objectives of this review are to (1) highlight the likely ecological consequences of drought-induced tree mortality, (2) synthesize the hypotheses related to drought-induced tree mortality, (3) discuss the implications of current knowledge for modeling tree mortality processes under climate change, and (4) highlight future research needs. First, we emphasize the likely ecological consequences of tree mortality from ecosystem to biome to continental scales. We then document and criticize multiple non-exclusive tree mortality hypotheses (e.g., carbon starvation — carbon supply is less than carbon demand; and hydraulic failure — desiccation from failed water transport) from a more comprehensive ecological perspective. Next, we extend a forest decline concept model, Manion’s framework, by considering new emerging environmental conditions, for a more thorough understanding of the effects of climate change on forest decline. We find that an increase in drought frequency and (or) climate-change-type droughts may trigger increased background tree mortality rates and severe forest dieback events, accelerating species turnover and ecological regime shifts. The contribution of CO 2 fertilization, rising temperature within the optimal growth range, and increased nitrogen deposition may defer or reduce this trend in tree mortality, but such contributions will vary between locations, species, and tree sizes. Multiple hypotheses proposed for drought-induced tree mortality are discussed, but coupling carbon and water cycles could help resolve the debate. The absence of a physiological understanding of tree mortality mechanisms limits the predictive ability of current models from stand-level process-based models to dynamic global vegetation models. We thus suggest that long-term observations, experiments, and models should be tightly interwoven during the research process to better forecast future climate changes and evaluate their impacts on forests.

    Consulter sur www.nrcresearchpress.com
  • Ma, X., Feng, H., Guo, J., Peng, C., Kneeshaw, D., & Wang, W. (2024). Soil methane emissions from plain poplar (Populus spp.) plantations with contrasting soil textures. Scientific Reports, 14(1), 14466. https://doi.org/10.1038/s41598-024-65300-0

    Abstract The forest soil methane (CH 4 ) flux exhibits high spatiotemporal variability. Understanding these variations and their driving factors is crucial for accurately assessing the forest CH 4 budget. In this study, we monitored the diurnal and seasonal variations in soil CH 4 fluxes in two poplar ( Populus spp.) plantations (Sihong and Dongtai) with different soil textures using the static chamber-based method. The results showed that the annual average soil CH 4 flux in the Sihong and Dongtai poplar plantations was 4.27 ± 1.37 kg CH 4 -C ha –1  yr –1 and 1.92 ± 1.07 kg CH 4 -C ha –1  yr –1 , respectively. Both plantations exhibited net CH 4 emissions during the growing season, with only weak CH 4 absorption (–0.01 to –0.007 mg m –2  h –1 ) during the non-growing season. Notably, there was a significant difference in soil CH 4 flux between the clay loam of the Sihong poplar plantation and the sandy loam of the Dongtai poplar plantation. From August to December 2019 and from July to August and November 2020, the soil CH 4 flux in the Sihong poplar plantation was significantly higher than in the Dongtai poplar plantation. Moreover, the soil CH 4 flux significantly increased with rising soil temperature and soil water content. Diurnally, the soil CH 4 flux followed a unimodal variation pattern at different growing stages of poplars, with peaks occurring at noon and in the afternoon. However, the soil CH 4 flux did not exhibit a consistent seasonal pattern across different years, likely due to substantial variations in precipitation and soil water content. Overall, our study emphasizes the need for a comprehensive understanding of the spatiotemporal variations in forest soil CH 4 flux with different soil textures. This understanding is vital for developing reasonable forest management strategies and reducing uncertainties in the global CH 4 budget.

    Consulter sur www.nature.com
  • Liu, Z., Peng, C., Work, T., Candau, J.-N., DesRochers, A., & Kneeshaw, D. (2018). Application of machine-learning methods in forest ecology: recent progress and future challenges. Environmental Reviews, 26(4), 339–350. https://doi.org/10.1139/er-2018-0034

    Machine learning, an important branch of artificial intelligence, is increasingly being applied in sciences such as forest ecology. Here, we review and discuss three commonly used methods of machine learning (ML) including decision-tree learning, artificial neural network, and support vector machine and their applications in four different aspects of forest ecology over the last decade. These applications include: (i) species distribution models, (ii) carbon cycles, (iii) hazard assessment and prediction, and (iv) other applications in forest management. Although ML approaches are useful for classification, modeling, and prediction in forest ecology research, further expansion of ML technologies is limited by the lack of suitable data and the relatively “higher threshold” of applications. However, the combined use of multiple algorithms and improved communication and cooperation between ecological researchers and ML developers still present major challenges and tasks for the betterment of future ecological research. We suggest that future applications of ML in ecology will become an increasingly attractive tool for ecologists in the face of “big data” and that ecologists will gain access to more types of data such as sound and video in the near future, possibly opening new avenues of research in forest ecology.

    Consulter sur www.nrcresearchpress.com
  • Liu, Q., Peng, C., Schneider, R., Cyr, D., McDowell, N. G., & Kneeshaw, D. (2023). Drought‐induced increase in tree mortality and corresponding decrease in the carbon sink capacity of Canada’s boreal forests from 1970 to 2020. Global Change Biology, 29(8), 2274–2285. https://doi.org/10.1111/gcb.16599

    Abstract Canada's boreal forests, which occupy approximately 30% of boreal forests worldwide, play an important role in the global carbon budget. However, there is little quantitative information available regarding the spatiotemporal changes in the drought‐induced tree mortality of Canada's boreal forests overall and their associated impacts on biomass carbon dynamics. Here, we develop spatiotemporally explicit estimates of drought‐induced tree mortality and corresponding biomass carbon sink capacity changes in Canada's boreal forests from 1970 to 2020. We show that the average annual tree mortality rate is approximately 2.7%. Approximately 43% of Canada's boreal forests have experienced significantly increasing tree mortality trends (71% of which are located in the western region of the country), and these trends have accelerated since 2002. This increase in tree mortality has resulted in significant biomass carbon losses at an approximate rate of 1.51 ± 0.29 MgC ha −1  year −1 (95% confidence interval) with an approximate total loss of 0.46 ± 0.09 PgC year −1 (95% confidence interval). Under the drought condition increases predicted for this century, the capacity of Canada's boreal forests to act as a carbon sink will be further reduced, potentially leading to a significant positive climate feedback effect.

    Consulter sur onlinelibrary.wiley.com
  • Wang, W., Peng, C., Kneeshaw, D. D., Larocque, G. R., Song, X., & Zhou, X. (2012). Quantifying the effects of climate change and harvesting on carbon dynamics of boreal aspen and jack pine forests using the TRIPLEX-Management model. Forest Ecology and Management, 281, 152–162. https://doi.org/10.1016/j.foreco.2012.06.028
    Consulter sur linkinghub.elsevier.com
  • Liu, Z., Peng, C., De Grandpré, L., Candau, J.-N., Zhou, X., & Kneeshaw, D. (2018). Development of a New TRIPLEX-Insect Model for Simulating the Effect of Spruce Budworm on Forest Carbon Dynamics. Forests, 9(9), 513. https://doi.org/10.3390/f9090513

    The spruce budworm (SBW) defoliates and kills conifer trees, consequently affecting carbon (C) exchanges between the land and atmosphere. Here, we developed a new TRIPLEX-Insect sub-model to quantify the impacts of insect outbreaks on forest C fluxes. We modeled annual defoliation (AD), cumulative defoliation (CD), and tree mortality. The model was validated against observed and published data at the stand level in the North Shore region of Québec and Cape Breton Island in Nova Scotia, Canada. The results suggest that TRIPLEX-Insect performs very well in capturing tree mortality following SBW outbreaks and slightly underestimates current annual volume increment (CAI). In both mature and immature forests, the simulation model suggests a larger reduction in gross primary productivity (GPP) than in autotrophic respiration (Ra) at the same defoliation level when tree mortality was low. After an SBW outbreak, the growth release of surviving trees contributes to the recovery of annual net ecosystem productivity (NEP) based on forest age if mortality is not excessive. Overall, the TRIPLEX-Insect model is capable of simulating C dynamics of balsam fir following SBW disturbances and can be used as an efficient tool in forest insect management.

    Consulter sur www.mdpi.com
  • Liu, Z., Peng, C., MacLean, D. A., De Grandpré, L., Candau, J.-N., & Kneeshaw, D. (2022). Evaluating and quantifying the effect of various spruce budworm intervention strategies on forest carbon dynamics in Atlantic Canada. Forest Ecosystems, 9, 100052. https://doi.org/10.1016/j.fecs.2022.100052
    Consulter sur linkinghub.elsevier.com
  • Liu, Q., Peng, C., Schneider, R., Cyr, D., Liu, Z., Zhou, X., & Kneeshaw, D. (2021). TRIPLEX-Mortality model for simulating drought-induced tree mortality in boreal forests: Model development and evaluation. Ecological Modelling, 455, 109652. https://doi.org/10.1016/j.ecolmodel.2021.109652
    Consulter sur linkinghub.elsevier.com
  • Wang, W., Peng, C., Zhang, S. Y., Zhou, X., Larocque, G. R., Kneeshaw, D. D., & Lei, X. (2011). Development of TRIPLEX-Management model for simulating the response of forest growth to pre-commercial thinning. Ecological Modelling, 222(14), 2249–2261. https://doi.org/10.1016/j.ecolmodel.2010.09.019
    Consulter sur linkinghub.elsevier.com
  • Liu, Z., Peng, C., De Grandpré, L., Candau, J., Work, T., Zhou, X., & Kneeshaw, D. (2020). Aerial spraying of bacterial insecticides to control spruce budworm defoliation leads to reduced carbon losses. Ecosphere, 11(1), e02988. https://doi.org/10.1002/ecs2.2988

    Abstract Spruce budworm (SBW) outbreaks are a major natural disturbance in boreal forests of eastern North America. During large‐scale infestations, aerial spraying of bacterial insecticides is used to suppress local high‐density SBW populations. While the primary goal of spraying is the protection of wood volume for later harvest, it should also maintain carbon stored in trees. This study provides the first quantitative analysis of the efficacy of aerial spraying against SBW on carbon dynamics in balsam fir, spruce, and mixed fir–spruce forests. In this study, we used the TRIPLEX‐Insect model to simulate carbon dynamics with and without spray applications in 14 sites of the boreal forest located in various regions of Québec. We found that the efficacy of aerial spraying on reducing annual defoliation was greater in the early stage (<5 yr since the outbreak began) of the outbreak than in later (5–10 yr since the outbreak began) stage. Our results showed that more net ecosystem productivity is maintained in balsam fir (the most vulnerable species) than in either spruce or mixed fir–spruce forests following spraying. Also, average losses in aboveground biomass due to the SBW following spraying occurred more slowly than without spraying in balsam fir forests. Our findings suggest that aerial spraying could be used to maintain carbon in conifer forests during SBW disturbances, but that the efficacy of spray programs is affected by host species and stage of the SBW outbreak.

    Consulter sur esajournals.onlinelibrary.wiley.com
  • Liu, Z., Peng, C., De Grandpré, L., Candau, J.-N., Work, T., Huang, C., & Kneeshaw, D. (2019). Simulation and Analysis of the Effect of a Spruce Budworm Outbreak on Carbon Dynamics in Boreal Forests of Quebec. Ecosystems, 22(8), 1838–1851. https://doi.org/10.1007/s10021-019-00377-7
    Consulter sur link.springer.com
  • Feng, H., Guo, J., Peng, C., Kneeshaw, D., Roberge, G., Pan, C., Ma, X., Zhou, D., & Wang, W. (2023). Nitrogen addition promotes terrestrial plants to allocate more biomass to aboveground organs: A global meta‐analysis. Global Change Biology, 29(14), 3970–3989. https://doi.org/10.1111/gcb.16731

    Abstract A significant increase in reactive nitrogen (N) added to terrestrial ecosystems through agricultural fertilization or atmospheric deposition is considered to be one of the most widespread drivers of global change. Modifying biomass allocation is one primary strategy for maximizing plant growth rate, survival, and adaptability to various biotic and abiotic stresses. However, there is much uncertainty as to whether and how plant biomass allocation strategies change in response to increased N inputs in terrestrial ecosystems. Here, we synthesized 3516 paired observations of plant biomass and their components related to N additions across terrestrial ecosystems worldwide. Our meta‐analysis reveals that N addition (ranging from 1.08 to 113.81 g m −2  year −1 ) increased terrestrial plant biomass by 55.6% on average. N addition has increased plant stem mass fraction, shoot mass fraction, and leaf mass fraction by 13.8%, 12.9%, and 13.4%, respectively, but with an associated decrease in plant reproductive mass (including flower and fruit biomass) fraction by 3.4%. We further documented a reduction in plant root‐shoot ratio and root mass fraction by 27% (21.8%–32.1%) and 14.7% (11.6%–17.8%), respectively, in response to N addition. Meta‐regression results showed that N addition effects on plant biomass were positively correlated with mean annual temperature, soil available phosphorus, soil total potassium, specific leaf area, and leaf area per plant. Nevertheless, they were negatively correlated with soil total N, leaf carbon/N ratio, leaf carbon and N content per leaf area, as well as the amount and duration of N addition. In summary, our meta‐analysis suggests that N addition may alter terrestrial plant biomass allocation strategies, leading to more biomass being allocated to aboveground organs than belowground organs and growth versus reproductive trade‐offs. At the global scale, leaf functional traits may dictate how plant species change their biomass allocation pattern in response to N addition.

    Consulter sur onlinelibrary.wiley.com
  • Guo, J., Feng, H., Peng, C., Du, J., Wang, W., Kneeshaw, D., Pan, C., Roberge, G., Feng, L., & Chen, A. (2024). Fire effects on soil CH4 and N2O fluxes across terrestrial ecosystems. Science of The Total Environment, 948, 174708. https://doi.org/10.1016/j.scitotenv.2024.174708
    Consulter sur linkinghub.elsevier.com
  • Feng, H., Guo, J., Peng, C., Ma, X., Kneeshaw, D., Chen, H., Liu, Q., Liu, M., Hu, C., & Wang, W. (2023). Global estimates of forest soil methane flux identify a temperate and tropical forest methane sink. Geoderma, 429, 116239. https://doi.org/10.1016/j.geoderma.2022.116239
    Consulter sur linkinghub.elsevier.com
  • Guo, J., Feng, H., Peng, C., Chen, H., Xu, X., Ma, X., Li, L., Kneeshaw, D., Ruan, H., Yang, H., & Wang, W. (2023). Global Climate Change Increases Terrestrial Soil CH4 Emissions. Global Biogeochemical Cycles, 37(1), e2021GB007255. https://doi.org/10.1029/2021GB007255

    Abstract Increased greenhouse gas emissions are causing unprecedented climate change, which is, in turn, altering emissions and removals (referring to the oxidation of atmospheric CH 4 by methanotrophs within the soil) of the atmospheric CH 4 in terrestrial ecosystems. In the global CH 4 budget, wetlands are the dominant natural source and upland soils are the primary biological sink. However, it is unclear whether and how the soil CH 4 exchanges across terrestrial ecosystems and the atmosphere will be affected by warming and changes in precipitation patterns. Here, we synthesize 762 observations of in situ soil CH 4 flux data based on the chamber method from the past three decades related to temperature and precipitation changes across major terrestrial ecosystems worldwide. Our meta‐analysis reveals that warming (average warming of +2°C) promotes upland soil CH 4 uptake and wetland soil CH 4 emission. Decreased precipitation (ranging from −100% to −7% of local mean annual precipitation) stimulates upland soil CH 4 uptake. Increased precipitation (ranging from +4% to +94% of local mean annual precipitation) accelerates the upland soil CH 4 emission. By 2100, under the shared socioeconomic pathway with a high radiative forcing level (SSP585), CH 4 emissions from global terrestrial ecosystems will increase by 22.8 ± 3.6 Tg CH 4  yr −1 as an additional CH 4 source, which may be mainly attributed to the increase in precipitation over 30°N latitudes. Our meta‐analysis strongly suggests that future climate change would weaken the natural buffering ability of terrestrial ecosystems on CH 4 fluxes and thus contributes to a positive feedback spiral. , Plain Language Summary This study is the first investigation to include scenarios of CH 4 sink–source transition due to climate change and provides the global estimate of soil CH 4 budgets in natural terrestrial ecosystems in the context of climate change. The enhanced effect of climate change on CH 4 emissions was mainly attributed to increased CH 4 emissions from natural upland ecosystems. Although an increased CH 4 uptake by forest and grassland soils caused by increased temperature and decreased precipitation can offset some part of additional CH 4 sources, the substantial increase of increased precipitation on CH 4 emissions makes these sinks insignificant. These findings highlight that future climate change would weaken the natural buffering ability of terrestrial ecosystems on CH 4 emissions and thus form a positive feedback spiral between methane emissions and climate change. , Key Points This study is the first CH 4 budget investigation to include CH 4 sink‐source transition due to climate change Climate change is estimated to add 22.8 ± 3.6 Tg CH 4  yr −1 emission by 2100 under the high socioeconomic pathway Climate change weakens the buffering capacity of upland soils to CH 4 emissions

    Consulter sur agupubs.onlinelibrary.wiley.com
  • Liu, Q., Peng, C., Schneider, R., Cyr, D., Liu, Z., Zhou, X., Du, M., Li, P., Jiang, Z., McDowell, N. G., & Kneeshaw, D. (2023). Vegetation browning: global drivers, impacts, and feedbacks. Trends in Plant Science, 28(9), 1014–1032. https://doi.org/10.1016/j.tplants.2023.03.024
    Consulter sur linkinghub.elsevier.com
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Flux web personnalisé
Dernière mise à jour depuis la base de données : 25/05/2025 05:00 (UTC)

Explorer

Auteur·e·s

  • Peng, Changhui (17)

Type de ressource

  • Article de revue (17)

Année de publication

  • Entre 2000 et 2025 (17)
    • Entre 2010 et 2019 (7)
      • 2011 (2)
      • 2012 (2)
      • 2018 (2)
      • 2019 (1)
    • Entre 2020 et 2025 (10)
      • 2020 (1)
      • 2021 (1)
      • 2022 (1)
      • 2023 (5)
      • 2024 (2)

Explorer

UQAM - Université du Québec à Montréal

  • Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • bibliotheques@uqam.ca

Accessibilité Web