Votre recherche
Résultats 17 ressources
-
Abstract Maintaining both the structure and functionality of forest ecosystems is a primary goal of forest management. In this study, relationships between structural diversity and aboveground stand carbon (C) stocks were examined in spruce-dominated forests in New Brunswick, Canada. Tree species, size, and height diversity indices as well as a combination of these diversity indices were used to correlate aboveground C stocks. Multiple linear regressions were subsequently used to quantify the relationships between these indices and aboveground C stocks, and partial correlation analysis was also adopted to remove the effects of other explanatory variables. Results show that stand structural diversity has a significant positive effect on aboveground C stocks even though the relationship is weak overall. Positive relationships observed between the diversity indices and aboveground C stocks support the hypothesis that increased structural diversity enhances aboveground C storage capacity. This occurs because complex forest structures allow for greater light infiltration and promote a more efficient resource use by trees, leading to an increase in biomass and C production. Mixed tolerant species composition and uneven-aged stand management in conjunction with selection or partial cutting to maintain high structural diversity is therefore recommended to preserve biodiversity and C stocks in spruce-dominated forests.
-
Drought-induced tree mortality, which rapidly alters forest ecosystem composition, structure, and function, as well as the feedbacks between the biosphere and climate, has occurred worldwide over the past few decades, and is expected to increase pervasively as climate change progresses. The objectives of this review are to (1) highlight the likely ecological consequences of drought-induced tree mortality, (2) synthesize the hypotheses related to drought-induced tree mortality, (3) discuss the implications of current knowledge for modeling tree mortality processes under climate change, and (4) highlight future research needs. First, we emphasize the likely ecological consequences of tree mortality from ecosystem to biome to continental scales. We then document and criticize multiple non-exclusive tree mortality hypotheses (e.g., carbon starvation — carbon supply is less than carbon demand; and hydraulic failure — desiccation from failed water transport) from a more comprehensive ecological perspective. Next, we extend a forest decline concept model, Manion’s framework, by considering new emerging environmental conditions, for a more thorough understanding of the effects of climate change on forest decline. We find that an increase in drought frequency and (or) climate-change-type droughts may trigger increased background tree mortality rates and severe forest dieback events, accelerating species turnover and ecological regime shifts. The contribution of CO 2 fertilization, rising temperature within the optimal growth range, and increased nitrogen deposition may defer or reduce this trend in tree mortality, but such contributions will vary between locations, species, and tree sizes. Multiple hypotheses proposed for drought-induced tree mortality are discussed, but coupling carbon and water cycles could help resolve the debate. The absence of a physiological understanding of tree mortality mechanisms limits the predictive ability of current models from stand-level process-based models to dynamic global vegetation models. We thus suggest that long-term observations, experiments, and models should be tightly interwoven during the research process to better forecast future climate changes and evaluate their impacts on forests.
-
Abstract The forest soil methane (CH 4 ) flux exhibits high spatiotemporal variability. Understanding these variations and their driving factors is crucial for accurately assessing the forest CH 4 budget. In this study, we monitored the diurnal and seasonal variations in soil CH 4 fluxes in two poplar ( Populus spp.) plantations (Sihong and Dongtai) with different soil textures using the static chamber-based method. The results showed that the annual average soil CH 4 flux in the Sihong and Dongtai poplar plantations was 4.27 ± 1.37 kg CH 4 -C ha –1 yr –1 and 1.92 ± 1.07 kg CH 4 -C ha –1 yr –1 , respectively. Both plantations exhibited net CH 4 emissions during the growing season, with only weak CH 4 absorption (–0.01 to –0.007 mg m –2 h –1 ) during the non-growing season. Notably, there was a significant difference in soil CH 4 flux between the clay loam of the Sihong poplar plantation and the sandy loam of the Dongtai poplar plantation. From August to December 2019 and from July to August and November 2020, the soil CH 4 flux in the Sihong poplar plantation was significantly higher than in the Dongtai poplar plantation. Moreover, the soil CH 4 flux significantly increased with rising soil temperature and soil water content. Diurnally, the soil CH 4 flux followed a unimodal variation pattern at different growing stages of poplars, with peaks occurring at noon and in the afternoon. However, the soil CH 4 flux did not exhibit a consistent seasonal pattern across different years, likely due to substantial variations in precipitation and soil water content. Overall, our study emphasizes the need for a comprehensive understanding of the spatiotemporal variations in forest soil CH 4 flux with different soil textures. This understanding is vital for developing reasonable forest management strategies and reducing uncertainties in the global CH 4 budget.
-
Machine learning, an important branch of artificial intelligence, is increasingly being applied in sciences such as forest ecology. Here, we review and discuss three commonly used methods of machine learning (ML) including decision-tree learning, artificial neural network, and support vector machine and their applications in four different aspects of forest ecology over the last decade. These applications include: (i) species distribution models, (ii) carbon cycles, (iii) hazard assessment and prediction, and (iv) other applications in forest management. Although ML approaches are useful for classification, modeling, and prediction in forest ecology research, further expansion of ML technologies is limited by the lack of suitable data and the relatively “higher threshold” of applications. However, the combined use of multiple algorithms and improved communication and cooperation between ecological researchers and ML developers still present major challenges and tasks for the betterment of future ecological research. We suggest that future applications of ML in ecology will become an increasingly attractive tool for ecologists in the face of “big data” and that ecologists will gain access to more types of data such as sound and video in the near future, possibly opening new avenues of research in forest ecology.
-
Abstract Canada's boreal forests, which occupy approximately 30% of boreal forests worldwide, play an important role in the global carbon budget. However, there is little quantitative information available regarding the spatiotemporal changes in the drought‐induced tree mortality of Canada's boreal forests overall and their associated impacts on biomass carbon dynamics. Here, we develop spatiotemporally explicit estimates of drought‐induced tree mortality and corresponding biomass carbon sink capacity changes in Canada's boreal forests from 1970 to 2020. We show that the average annual tree mortality rate is approximately 2.7%. Approximately 43% of Canada's boreal forests have experienced significantly increasing tree mortality trends (71% of which are located in the western region of the country), and these trends have accelerated since 2002. This increase in tree mortality has resulted in significant biomass carbon losses at an approximate rate of 1.51 ± 0.29 MgC ha −1 year −1 (95% confidence interval) with an approximate total loss of 0.46 ± 0.09 PgC year −1 (95% confidence interval). Under the drought condition increases predicted for this century, the capacity of Canada's boreal forests to act as a carbon sink will be further reduced, potentially leading to a significant positive climate feedback effect.
-
The spruce budworm (SBW) defoliates and kills conifer trees, consequently affecting carbon (C) exchanges between the land and atmosphere. Here, we developed a new TRIPLEX-Insect sub-model to quantify the impacts of insect outbreaks on forest C fluxes. We modeled annual defoliation (AD), cumulative defoliation (CD), and tree mortality. The model was validated against observed and published data at the stand level in the North Shore region of Québec and Cape Breton Island in Nova Scotia, Canada. The results suggest that TRIPLEX-Insect performs very well in capturing tree mortality following SBW outbreaks and slightly underestimates current annual volume increment (CAI). In both mature and immature forests, the simulation model suggests a larger reduction in gross primary productivity (GPP) than in autotrophic respiration (Ra) at the same defoliation level when tree mortality was low. After an SBW outbreak, the growth release of surviving trees contributes to the recovery of annual net ecosystem productivity (NEP) based on forest age if mortality is not excessive. Overall, the TRIPLEX-Insect model is capable of simulating C dynamics of balsam fir following SBW disturbances and can be used as an efficient tool in forest insect management.
-
Abstract Spruce budworm (SBW) outbreaks are a major natural disturbance in boreal forests of eastern North America. During large‐scale infestations, aerial spraying of bacterial insecticides is used to suppress local high‐density SBW populations. While the primary goal of spraying is the protection of wood volume for later harvest, it should also maintain carbon stored in trees. This study provides the first quantitative analysis of the efficacy of aerial spraying against SBW on carbon dynamics in balsam fir, spruce, and mixed fir–spruce forests. In this study, we used the TRIPLEX‐Insect model to simulate carbon dynamics with and without spray applications in 14 sites of the boreal forest located in various regions of Québec. We found that the efficacy of aerial spraying on reducing annual defoliation was greater in the early stage (<5 yr since the outbreak began) of the outbreak than in later (5–10 yr since the outbreak began) stage. Our results showed that more net ecosystem productivity is maintained in balsam fir (the most vulnerable species) than in either spruce or mixed fir–spruce forests following spraying. Also, average losses in aboveground biomass due to the SBW following spraying occurred more slowly than without spraying in balsam fir forests. Our findings suggest that aerial spraying could be used to maintain carbon in conifer forests during SBW disturbances, but that the efficacy of spray programs is affected by host species and stage of the SBW outbreak.
-
Abstract A significant increase in reactive nitrogen (N) added to terrestrial ecosystems through agricultural fertilization or atmospheric deposition is considered to be one of the most widespread drivers of global change. Modifying biomass allocation is one primary strategy for maximizing plant growth rate, survival, and adaptability to various biotic and abiotic stresses. However, there is much uncertainty as to whether and how plant biomass allocation strategies change in response to increased N inputs in terrestrial ecosystems. Here, we synthesized 3516 paired observations of plant biomass and their components related to N additions across terrestrial ecosystems worldwide. Our meta‐analysis reveals that N addition (ranging from 1.08 to 113.81 g m −2 year −1 ) increased terrestrial plant biomass by 55.6% on average. N addition has increased plant stem mass fraction, shoot mass fraction, and leaf mass fraction by 13.8%, 12.9%, and 13.4%, respectively, but with an associated decrease in plant reproductive mass (including flower and fruit biomass) fraction by 3.4%. We further documented a reduction in plant root‐shoot ratio and root mass fraction by 27% (21.8%–32.1%) and 14.7% (11.6%–17.8%), respectively, in response to N addition. Meta‐regression results showed that N addition effects on plant biomass were positively correlated with mean annual temperature, soil available phosphorus, soil total potassium, specific leaf area, and leaf area per plant. Nevertheless, they were negatively correlated with soil total N, leaf carbon/N ratio, leaf carbon and N content per leaf area, as well as the amount and duration of N addition. In summary, our meta‐analysis suggests that N addition may alter terrestrial plant biomass allocation strategies, leading to more biomass being allocated to aboveground organs than belowground organs and growth versus reproductive trade‐offs. At the global scale, leaf functional traits may dictate how plant species change their biomass allocation pattern in response to N addition.
-
Abstract Increased greenhouse gas emissions are causing unprecedented climate change, which is, in turn, altering emissions and removals (referring to the oxidation of atmospheric CH 4 by methanotrophs within the soil) of the atmospheric CH 4 in terrestrial ecosystems. In the global CH 4 budget, wetlands are the dominant natural source and upland soils are the primary biological sink. However, it is unclear whether and how the soil CH 4 exchanges across terrestrial ecosystems and the atmosphere will be affected by warming and changes in precipitation patterns. Here, we synthesize 762 observations of in situ soil CH 4 flux data based on the chamber method from the past three decades related to temperature and precipitation changes across major terrestrial ecosystems worldwide. Our meta‐analysis reveals that warming (average warming of +2°C) promotes upland soil CH 4 uptake and wetland soil CH 4 emission. Decreased precipitation (ranging from −100% to −7% of local mean annual precipitation) stimulates upland soil CH 4 uptake. Increased precipitation (ranging from +4% to +94% of local mean annual precipitation) accelerates the upland soil CH 4 emission. By 2100, under the shared socioeconomic pathway with a high radiative forcing level (SSP585), CH 4 emissions from global terrestrial ecosystems will increase by 22.8 ± 3.6 Tg CH 4 yr −1 as an additional CH 4 source, which may be mainly attributed to the increase in precipitation over 30°N latitudes. Our meta‐analysis strongly suggests that future climate change would weaken the natural buffering ability of terrestrial ecosystems on CH 4 fluxes and thus contributes to a positive feedback spiral. , Plain Language Summary This study is the first investigation to include scenarios of CH 4 sink–source transition due to climate change and provides the global estimate of soil CH 4 budgets in natural terrestrial ecosystems in the context of climate change. The enhanced effect of climate change on CH 4 emissions was mainly attributed to increased CH 4 emissions from natural upland ecosystems. Although an increased CH 4 uptake by forest and grassland soils caused by increased temperature and decreased precipitation can offset some part of additional CH 4 sources, the substantial increase of increased precipitation on CH 4 emissions makes these sinks insignificant. These findings highlight that future climate change would weaken the natural buffering ability of terrestrial ecosystems on CH 4 emissions and thus form a positive feedback spiral between methane emissions and climate change. , Key Points This study is the first CH 4 budget investigation to include CH 4 sink‐source transition due to climate change Climate change is estimated to add 22.8 ± 3.6 Tg CH 4 yr −1 emission by 2100 under the high socioeconomic pathway Climate change weakens the buffering capacity of upland soils to CH 4 emissions