Votre recherche
Résultats 4 ressources
-
Abstract Northeast Brazil and Western Africa are two regions geographically separated by the Atlantic Ocean, both home to vulnerable populations living in semi-arid areas. Atlantic Ocean modes of variability and their interactions with the atmosphere are the main drivers of decadal precipitation in these Atlantic Ocean coastal areas. How these low-frequency modes of variability evolve and interact with each other is key to understanding and predicting decadal precipitation. Here we use the Self-Organizing Maps neural network with different variables to unravel causality between the Atlantic modes of variability and their interactions with the atmosphere. Our study finds an 82% (p<0.05) anti-correlation between decadal rainfall in Northeast Brazil and Western Africa from 1979 to 2005. We also find three multi-decadal cycles: 1870-1920, 1920-1970, and 1970-2019 (satellite era), pointing to a 50-year periodicity governing the sea surface temperature anomalies of Tropical and South Atlantic. Our results demonstrate how Northeast Brazil and Western Africa rainfall anti-correlation was formed in the satellite era and how it might be part of a 50-year cycle from the Tropical and South Atlantic decadal variability.
-
Abstract. The enhancement of the stratospheric aerosol layer by volcanic eruptions induces a complex set of responses causing global and regional climate effects on a broad range of timescales. Uncertainties exist regarding the climatic response to strong volcanic forcing identified in coupled climate simulations that contributed to the fifth phase of the Coupled Model Intercomparison Project (CMIP5). In order to better understand the sources of these model diversities, the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP) has defined a coordinated set of idealized volcanic perturbation experiments to be carried out in alignment with the CMIP6 protocol. VolMIP provides a common stratospheric aerosol data set for each experiment to minimize differences in the applied volcanic forcing. It defines a set of initial conditions to assess how internal climate variability contributes to determining the response. VolMIP will assess to what extent volcanically forced responses of the coupled ocean–atmosphere system are robustly simulated by state-of-the-art coupled climate models and identify the causes that limit robust simulated behavior, especially differences in the treatment of physical processes. This paper illustrates the design of the idealized volcanic perturbation experiments in the VolMIP protocol and describes the common aerosol forcing input data sets to be used.