Votre recherche
Résultats 5 ressources
-
How to effectively combine remote sensing data with the eddy covariance (EC) technique to accurately quantify gross primary production (GPP) in coastal wetlands has been a challenge and is also important and necessary for carbon (C) budgets assessment and climate change studies at larger scales. In this study, a satellite-based Vegetation Photosynthesis Model (VPM) combined with EC measurement and Moderate Resolution Imaging Spectroradiometer (MODIS) data was used to evaluate the phenological characteristics and the biophysical performance of MODIS-based vegetation indices (VIs) and the feasibility of the model for simulating GPP of coastal wetland ecosystems. The results showed that greenness-related and water-related VIs can better identify the green-up and the senescence phases of coastal wetland vegetation, corresponds well with the C uptake period and the phenological patterns that were delineated by GPP from EC tower (GPPEC). Temperature can explain most of the seasonal variation in VIs and GPPEC fluxes. Both enhanced vegetation index (EVI) and water-sensitive land surface water index (LSWI) have a higher predictive power for simulating GPP in this coastal wetland. The comparisons between modeled GPP (GPPVPM) and GPPEC indicated that VPM model can commendably simulate the trajectories of the seasonal dynamics of GPPEC fluxes in terms of patterns and magnitudes, explaining about 85% of GPPEC changes over the study years (p < 0.0001). The results also demonstrate the potential of satellite-driven VPM model for modeling C uptake at large spatial and temporal scales in coastal wetlands, which can provide valuable production data for the assessment of global wetland C sink/source.
-
Abstract With a pace of about twice the observed rate of global warming, the temperature on the Qinghai‐Tibetan Plateau (Earth's ‘third pole’) has increased by 0.2 °C per decade over the past 50 years, which results in significant permafrost thawing and glacier retreat. Our review suggested that warming enhanced net primary production and soil respiration, decreased methane ( CH 4 ) emissions from wetlands and increased CH 4 consumption of meadows, but might increase CH 4 emissions from lakes. Warming‐induced permafrost thawing and glaciers melting would also result in substantial emission of old carbon dioxide ( CO 2 ) and CH 4 . Nitrous oxide ( N 2 O ) emission was not stimulated by warming itself, but might be slightly enhanced by wetting. However, there are many uncertainties in such biogeochemical cycles under climate change. Human activities (e.g. grazing, land cover changes) further modified the biogeochemical cycles and amplified such uncertainties on the plateau. If the projected warming and wetting continues, the future biogeochemical cycles will be more complicated. So facing research in this field is an ongoing challenge of integrating field observations with process‐based ecosystem models to predict the impacts of future climate change and human activities at various temporal and spatial scales. To reduce the uncertainties and to improve the precision of the predictions of the impacts of climate change and human activities on biogeochemical cycles, efforts should focus on conducting more field observation studies, integrating data within improved models, and developing new knowledge about coupling among carbon, nitrogen, and phosphorus biogeochemical cycles as well as about the role of microbes in these cycles.