Votre recherche
Résultats 2 ressources
-
We compare ensemble mean daily precipitation and near‐surface temperatures from regional climate model simulations over seven Coordinated Regional Climate Downscaling Experiment domains for the winter and summer seasons. We use Taylor diagrams to show the domain‐wide pattern similarity between the model ensemble and the observational data sets. We use the Climatic Research Unit (CRU) and the University of Delaware gridded observations and ERA‐Interim reanalysis data as an additional observationally based estimate of historical climatology. Taylor diagrams determine the relative skill of the seven sets of simulations and quantify these results in terms of center pattern root‐mean square error and correlation coefficient. Results suggest that there is good agreement between the models and the CRU, in terms of their respective seasonal cycles, as shown in Taylor diagrams and bias plots. There is also good agreement between both gridded observation sets. In addition, downscaled ERA‐Interim precipitation is closer to observations than raw ERA‐Interim precipitation. Domains located in the low latitudes and those having high topography appear to have larger biases, especially precipitation.
-
Abstract. Several sets of reference regions have been used in the literature for the regional synthesis of observed and modelled climate and climate change information. A popular example is the series of reference regions used in the Intergovernmental Panel on Climate Change (IPCC) Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Adaptation (SREX). The SREX regions were slightly modified for the Fifth Assessment Report of the IPCC and used for reporting subcontinental observed and projected changes over a reduced number (33) of climatologically consistent regions encompassing a representative number of grid boxes. These regions are intended to allow analysis of atmospheric data over broad land or ocean regions and have been used as the basis for several popular spatially aggregated datasets, such as the Seasonal Mean Temperature and Precipitation in IPCC Regions for CMIP5 dataset. We present an updated version of the reference regions for the analysis of new observed and simulated datasets (including CMIP6) which offer an opportunity for refinement due to the higher atmospheric model resolution. As a result, the number of land and ocean regions is increased to 46 and 15, respectively, better representing consistent regional climate features. The paper describes the rationale for the definition of the new regions and analyses their homogeneity. The regions are defined as polygons and are provided as coordinates and a shapefile together with companion R and Python notebooks to illustrate their use in practical problems (e.g. calculating regional averages). We also describe the generation of a new dataset with monthly temperature and precipitation, spatially aggregated in the new regions, currently for CMIP5 and CMIP6, to be extended to other datasets in the future (including observations). The use of these reference regions, dataset and code is illustrated through a worked example using scatter plots to offer guidance on the likely range of future climate change at the scale of the reference regions. The regions, datasets and code (R and Python notebooks) are freely available at the ATLAS GitHub repository: https://github.com/SantanderMetGroup/ATLAS (last access: 24 August 2020), https://doi.org/10.5281/zenodo.3998463 (Iturbide et al., 2020).