Votre recherche
Résultats 27 ressources
-
The spatial and temporal variation and uncertainty of precipitation and runoff in China were compared and evaluated between historical and future periods under different climate change scenarios. The precipitation pattern is derived from observed and future projected precipitation data for historical and future periods, respectively. The runoff is derived from simulation results in historical and future periods using a dynamic global vegetation model (DGVM) forced with historical observed and global climate models (GCMs) future projected climate data, respectively. One GCM (CGCM3.1) under two emission scenarios (SRES A2 and SRES B1) was used for the future period simulations. The results indicated high uncertainties and variations in climate change effects on hydrological processes in China: precipitation and runoff showed a significant increasing trend in the future period but a decreasing trend in the historical period at the national level; the temporal variation and uncertainty of projected precipitation and runoff in the future period were predicted to be higher than those in the historical period; the levels of precipitation and runoff in the future period were higher than those in the historical period. The change in trends of precipitation and runoff are highly affected by different climate change scenarios. GCM structure and emission scenarios should be the major sources of uncertainty.
-
Abstract Over the past 100 years, human activity has greatly changed the rate of atmospheric N (nitrogen) deposition in terrestrial ecosystems, resulting in N saturation in some regions of the world. The contribution of N saturation to the global carbon budget remains uncertain due to the complicated nature of C-N (carbon-nitrogen) interactions and diverse geography. Although N deposition is included in most terrestrial ecosystem models, the effect of N saturation is frequently overlooked. In this study, the IBIS (Integrated BIosphere Simulator) was used to simulate the global-scale effects of N saturation during the period 1961–2009. The results of this model indicate that N saturation reduced global NPP (Net Primary Productivity) and NEP (Net Ecosystem Productivity) by 0.26 and 0.03 Pg C yr −1 , respectively. The negative effects of N saturation on carbon sequestration occurred primarily in temperate forests and grasslands. In response to elevated CO 2 levels, global N turnover slowed due to increased biomass growth, resulting in a decline in soil mineral N. These changes in N cycling reduced the impact of N saturation on the global carbon budget. However, elevated N deposition in certain regions may further alter N saturation and C-N coupling.
-
Abstract Aim The fluctuations of atmospheric methane ( CH 4 ) that have occurred in recent decades are not fully understood, particularly with regard to the contribution from wetlands. The application of spatially explicit parameters has been suggested as an effective method for reducing uncertainties in bottom‐up approaches to wetland CH 4 emissions, but has not been included in recent studies. Our goal was to estimate spatio‐temporal patterns of global wetland CH 4 emissions using a process model and then to identify the contribution of wetland emissions to atmospheric CH 4 fluctuations. Location Global. Methods A process‐based model integrated with full descriptions of methanogenesis ( TRIPLEX‐GHG ) was used to simulate global wetland CH 4 emissions. Results Global annual wetland CH 4 emissions ranged from 209 to 245 T g CH 4 year −1 between 1901 and 2012, with peaks occurring in 1991 and 2012. There is a decreasing trend between 1990 and 2010 with a rate of approximately 0.48 T g CH 4 year −1 , which was largely caused by emissions from tropical wetlands showing a decreasing trend of 0.44 T g CH 4 year −1 since the 1970s. Emissions from tropical, temperate and high‐latitude wetlands comprised 59, 26 and 15% of global emissions, respectively. Main conclusion Global wetland CH 4 emissions, the interannual variability of which was primary controlled by tropical wetlands, partially drive the atmospheric CH 4 burden. The stable to decreasing trend in wetland CH 4 emissions, a result of a balance of emissions from tropical and extratropical wetlands, was a particular factor in slowing the atmospheric CH 4 growth rate during the 1990s. The rapid decrease in tropical wetland CH 4 emissions that began in 2000 was supposed to offset the increase in anthropogenic emissions and resulted in a relatively stable level of atmospheric CH 4 from 2000 to 2006. Increasing wetland CH 4 emissions, particularly after 2010, should be an important contributor to the growth in atmospheric CH 4 seen since 2007.
- 1
- 2