Votre recherche
Résultats 34 ressources
-
Abstract Over the past 100 years, human activity has greatly changed the rate of atmospheric N (nitrogen) deposition in terrestrial ecosystems, resulting in N saturation in some regions of the world. The contribution of N saturation to the global carbon budget remains uncertain due to the complicated nature of C-N (carbon-nitrogen) interactions and diverse geography. Although N deposition is included in most terrestrial ecosystem models, the effect of N saturation is frequently overlooked. In this study, the IBIS (Integrated BIosphere Simulator) was used to simulate the global-scale effects of N saturation during the period 1961–2009. The results of this model indicate that N saturation reduced global NPP (Net Primary Productivity) and NEP (Net Ecosystem Productivity) by 0.26 and 0.03 Pg C yr −1 , respectively. The negative effects of N saturation on carbon sequestration occurred primarily in temperate forests and grasslands. In response to elevated CO 2 levels, global N turnover slowed due to increased biomass growth, resulting in a decline in soil mineral N. These changes in N cycling reduced the impact of N saturation on the global carbon budget. However, elevated N deposition in certain regions may further alter N saturation and C-N coupling.
-
Abstract Aim The fluctuations of atmospheric methane ( CH 4 ) that have occurred in recent decades are not fully understood, particularly with regard to the contribution from wetlands. The application of spatially explicit parameters has been suggested as an effective method for reducing uncertainties in bottom‐up approaches to wetland CH 4 emissions, but has not been included in recent studies. Our goal was to estimate spatio‐temporal patterns of global wetland CH 4 emissions using a process model and then to identify the contribution of wetland emissions to atmospheric CH 4 fluctuations. Location Global. Methods A process‐based model integrated with full descriptions of methanogenesis ( TRIPLEX‐GHG ) was used to simulate global wetland CH 4 emissions. Results Global annual wetland CH 4 emissions ranged from 209 to 245 T g CH 4 year −1 between 1901 and 2012, with peaks occurring in 1991 and 2012. There is a decreasing trend between 1990 and 2010 with a rate of approximately 0.48 T g CH 4 year −1 , which was largely caused by emissions from tropical wetlands showing a decreasing trend of 0.44 T g CH 4 year −1 since the 1970s. Emissions from tropical, temperate and high‐latitude wetlands comprised 59, 26 and 15% of global emissions, respectively. Main conclusion Global wetland CH 4 emissions, the interannual variability of which was primary controlled by tropical wetlands, partially drive the atmospheric CH 4 burden. The stable to decreasing trend in wetland CH 4 emissions, a result of a balance of emissions from tropical and extratropical wetlands, was a particular factor in slowing the atmospheric CH 4 growth rate during the 1990s. The rapid decrease in tropical wetland CH 4 emissions that began in 2000 was supposed to offset the increase in anthropogenic emissions and resulted in a relatively stable level of atmospheric CH 4 from 2000 to 2006. Increasing wetland CH 4 emissions, particularly after 2010, should be an important contributor to the growth in atmospheric CH 4 seen since 2007.
-
Drought has been one of the most important limiting factors for crop production, which deleteriously affects food security worldwide. The main objective of the present study was to quantitatively assess the effect of drought on the agronomic traits (e.g., plant height, biomass, yield, and yield components) of rice and wheat in combination with several moderators (e.g., drought stress intensity, rooting environment, and growth stage) using a meta-analysis study. The database was created from 55 published studies on rice and 60 published studies on wheat. The results demonstrated that drought decreased the agronomic traits differently between rice and wheat among varying growth stages. Wheat and rice yields decreased by 27.5% and 25.4%, respectively. Wheat grown in pots showed greater decreases in agronomic traits than those grown in the field. Rice showed opposite growing patterns when compared to wheat in rooting environments. The effect of drought on rice increased with plant growth and drought had larger detrimental influences during the reproductive phase (e.g., blooming stage, filling stage, and maturity). However, an exception was found in wheat, which had similar decreased performance during the complete growth cycle. Based on these results, future droughts could produce lower yields of rice and wheat when compared to the current drought.
-
Abstract The Integrated Biosphere Simulator is used to evaluate the spatial and temporal patterns of the crucial hydrological variables [run‐off and actual evapotranspiration (AET)] of the water balance across China for the period 1951–2006 including a precipitation analysis. Results suggest three major findings. First, simulated run‐off captured 85% of the spatial variability and 80% of the temporal variability for 85 hydrological gauges across China. The mean relative errors were within 20% for 66% of the studied stations and within 30% for 86% of the stations. The Nash–Sutcliffe coefficients indicated that the quantity pattern of run‐off was also captured acceptably except for some watersheds in southwestern and northwestern China. The possible reasons for underestimation of run‐off in the Tibetan plateau include underestimation of precipitation and uncertainties in other meteorological data due to complex topography, and simplified representations of the soil depth attribute and snow processes in the model. Second, simulated AET matched reasonably with estimated values calculated as the residual of precipitation and run‐off for watersheds controlled by the hydrological gauges. Finally, trend analysis based on the Mann–Kendall method indicated that significant increasing and decreasing patterns in precipitation appeared in the northwest part of China and the Yellow River region, respectively. Significant increasing and decreasing trends in AET were detected in the Southwest region and the Yangtze River region, respectively. In addition, the Southwest region, northern China (including the Heilongjiang, Liaohe, and Haihe Basins), and the Yellow River Basin showed significant decreasing trends in run‐off, and the Zhemin hydrological region showed a significant increasing trend. Copyright © 2009 John Wiley & Sons, Ltd.
-
Abstract Sources of methane ( CH 4 ) become highly variable for countries undergoing a heightened period of development due to both human activity and climate change. An urgent need therefore exists to budget key sources of CH 4 , such as wetlands (rice paddies and natural wetlands) and lakes (including reservoirs and ponds), which are sensitive to these changes. For this study, references in relation to CH 4 emissions from rice paddies, natural wetlands, and lakes in C hina were first reviewed and then reestimated based on the review itself. Total emissions from the three CH 4 sources were 11.25 Tg CH 4 yr −1 (ranging from 7.98 to 15.16 Tg CH 4 yr −1 ). Among the emissions, 8.11 Tg CH 4 yr −1 (ranging from 5.20 to 11.36 Tg CH 4 yr −1 ) derived from rice paddies, 2.69 Tg CH 4 yr −1 (ranging from 2.46 to 3.20 Tg CH 4 yr −1 ) from natural wetlands, and 0.46 Tg CH 4 yr −1 (ranging from 0.33 to 0.59 Tg CH 4 yr −1 ) from lakes (including reservoirs and ponds). Plentiful water and warm conditions, as well as its large rice paddy area make rice paddies in southeastern C hina the greatest overall source of CH 4 , accounting for approximately 55% of total paddy emissions. Natural wetland estimates were slightly higher than the other estimates owing to the higher CH 4 emissions recorded within Q inghai‐ T ibetan P lateau peatlands. Total CH 4 emissions from lakes were estimated for the first time by this study, with three quarters from the littoral zone and one quarter from lake surfaces. Rice paddies, natural wetlands, and lakes are not constant sources of CH 4 , but decreasing ones influenced by anthropogenic activity and climate change. A new progress‐based model used in conjunction with more observations through model‐data fusion approach could help obtain better estimates and insights with regard to CH 4 emissions deriving from wetlands and lakes in C hina.
-
Abstract Both anthropogenic activities and climate change can affect the biogeochemical processes of natural wetland methanogenesis. Quantifying possible impacts of changing climate and wetland area on wetland methane (CH 4 ) emissions in China is important for improving our knowledge on CH 4 budgets locally and globally. However, their respective and combined effects are uncertain. We incorporated changes in wetland area derived from remote sensing into a dynamic CH 4 model to quantify the human and climate change induced contributions to natural wetland CH 4 emissions in China over the past three decades. Here we found that human-induced wetland loss contributed 34.3% to the CH 4 emissions reduction (0.92 TgCH 4 ), and climate change contributed 20.4% to the CH 4 emissions increase (0.31 TgCH 4 ), suggesting that decreasing CH 4 emissions due to human-induced wetland reductions has offset the increasing climate-driven CH 4 emissions. With climate change only, temperature was a dominant controlling factor for wetland CH 4 emissions in the northeast (high latitude) and Qinghai-Tibet Plateau (high altitude) regions, whereas precipitation had a considerable influence in relative arid north China. The inevitable uncertainties caused by the asynchronous for different regions or periods due to inter-annual or seasonal variations among remote sensing images should be considered in the wetland CH 4 emissions estimation.
-
Abstract Methane (CH 4 ) emissions from tropical wetlands contribute 60%–80% of global natural wetland CH 4 emissions. Decreased wetland CH 4 emissions can act as a negative feedback mechanism for future climate warming and vice versa. The impact of the El Niño–Southern Oscillation (ENSO) on CH 4 emissions from wetlands remains poorly quantified at both regional and global scales, and El Niño events are expected to become more severe based on climate models’ projections. We use a process‐based model of global wetland CH 4 emissions to investigate the impacts of the ENSO on CH 4 emissions in tropical wetlands for the period from 1950 to 2012. The results show that CH 4 emissions from tropical wetlands respond strongly to repeated ENSO events, with negative anomalies occurring during El Niño periods and with positive anomalies occurring during La Niña periods. An approximately 8‐month time lag was detected between tropical wetland CH 4 emissions and ENSO events, which was caused by the combined time lag effects of ENSO events on precipitation and temperature over tropical wetlands. The ENSO can explain 49% of interannual variations for tropical wetland CH 4 emissions. Furthermore, relative to neutral years, changes in temperature have much stronger effects on tropical wetland CH 4 emissions than the changes in precipitation during ENSO periods. The occurrence of several El Niño events contributed to a lower decadal mean growth rate in atmospheric CH 4 concentrations throughout the 1980s and 1990s and to stable atmospheric CH 4 concentrations from 1999 to 2006, resulting in negative feedback to global warming.
-
Abstract With a pace of about twice the observed rate of global warming, the temperature on the Qinghai‐Tibetan Plateau (Earth's ‘third pole’) has increased by 0.2 °C per decade over the past 50 years, which results in significant permafrost thawing and glacier retreat. Our review suggested that warming enhanced net primary production and soil respiration, decreased methane ( CH 4 ) emissions from wetlands and increased CH 4 consumption of meadows, but might increase CH 4 emissions from lakes. Warming‐induced permafrost thawing and glaciers melting would also result in substantial emission of old carbon dioxide ( CO 2 ) and CH 4 . Nitrous oxide ( N 2 O ) emission was not stimulated by warming itself, but might be slightly enhanced by wetting. However, there are many uncertainties in such biogeochemical cycles under climate change. Human activities (e.g. grazing, land cover changes) further modified the biogeochemical cycles and amplified such uncertainties on the plateau. If the projected warming and wetting continues, the future biogeochemical cycles will be more complicated. So facing research in this field is an ongoing challenge of integrating field observations with process‐based ecosystem models to predict the impacts of future climate change and human activities at various temporal and spatial scales. To reduce the uncertainties and to improve the precision of the predictions of the impacts of climate change and human activities on biogeochemical cycles, efforts should focus on conducting more field observation studies, integrating data within improved models, and developing new knowledge about coupling among carbon, nitrogen, and phosphorus biogeochemical cycles as well as about the role of microbes in these cycles.
- 1
- 2