Votre recherche
Résultats 2 ressources
-
The Chapman-Richards growth function is used to model jack pine (Pinus banksiana Lamb.) tree height-diameter relationships at provincial, regional, and ecoregional levels. The results suggest that the tree height-diameter relationships of jack pine are significantly different among the geographic regions of Ontario, depending on local climatic, soil, and ecological conditions. In light of this study, the provincial and regional height-diameter models are not appropriate for predicting tree heights at the ecoregional level. Further, applying a specific ecoregional model to other ecoregions will also result in significant biases for predicting local tree heights. The ecoregion-based height-diameter models developed in this study may provide more accurate information on tree growth and development to forest resource managers and planners. Key words: Chapman-Richards growth function, permanent sample plot, non-linear extra sum of square method, forest management
-
Abstract A total of 11,612 black spruce trees were measured from permanent sample plots across the boreal and central regions of Ontario and were used to fit the well-known Chapman-Richards growth model at provincial, regional, and ecoregional scales. The results suggest that the height-diameter relationships of black spruce vary with different geographic regions and scales. There were significant variations in height-diameter relationships for black spruce between boreal and central regions as well as among some of the seven ecoregions. The ecoregion-based height-diameter models presented here will provide more accurate predictions for tree height and, consequently, tree volume than these models developed at both provincial and regional scales. Furthermore, the heterogeneity of tree species should be considered in developing and applying ecoregion-based height-diameter models for predicting local tree height.