Votre recherche
Résultats 3 ressources
-
During the mid‐Holocene (6 kyr BP), West Africa experienced a much stronger and geographically extensive monsoon than in the present day. Changes in orbital forcing, vegetation and dust emissions from the Sahara have been identified as key factors driving this intensification. Here, we analyse how the timing, origin and convergence of moisture fluxes contributing to the monsoonal precipitation change under a range of scenarios: orbital forcing only; orbital and vegetation forcings (Green Sahara); orbital, vegetation and dust forcings (Green Sahara‐reduced dust). We further compare our results to a range of reconstructions of mid‐Holocene precipitation from palaeoclimate archives. In our simulations, the greening of the Sahara leads to a cyclonic water vapour flux anomaly over North Africa with an anomalous westerly flow bringing large amounts of moisture into the Sahel from the Atlantic Ocean. Changes in atmospheric dust under a vegetated Sahara shift the anomalous moisture advection pattern northwards, increasing both moisture convergence and precipitation recycling over the northern Sahel and Sahara and the associated precipitation during the boreal summer. During this season, under both the Green Sahara and Green Sahara‐reduced dust scenarios, local recycling in the Saharan domain exceeds that of the Sahel. This points to local recycling as an important factor modulating vegetation‐precipitation feedbacks and the impact of Saharan dust emissions. Our results also show that temperature and evapotranspiration over the Sahara in the mid‐Holocene are close to Sahelian pre‐industrial values. This suggests that pollen‐based paleoclimate reconstructions of precipitation during the Green Sahara period are likely not biased by possible large evapotranspiration changes in the region.
-
Abstract. During the first half of the Holocene (11 000 to 5000 years ago), the Northern Hemisphere experienced a strengthening of the monsoonal regime, with climate reconstructions robustly suggesting a greening of the Sahara region. Palaeoclimate archives also show that this so-called African humid period (AHP) was accompanied by changes in climate conditions at middle to high latitudes. However, inconsistencies still exist in reconstructions of the mid-Holocene (MH) climate at mid-latitudes, and model simulations provide limited support in reducing these discrepancies. In this paper, a set of simulations performed using a climate model are used to investigate the hitherto unexplored impact of Saharan greening on mid-latitude atmospheric circulation during the MH. Numerical simulations show Saharan greening has a year-round impact on the main circulation features in the Northern Hemisphere, especially during boreal summer (when the African monsoon develops). Key findings include a westward shift in the global Walker Circulation, leading to modifications in the North Atlantic jet stream in summer and the North Pacific jet stream in winter. Furthermore, Saharan greening modifies atmospheric synoptic circulation over the North Atlantic, enhancing the effect of orbital forcing on the transition of the North Atlantic Oscillation phase from predominantly positive to negative in winter and summer. Although the prescription of vegetation in the Sahara does not improve the proxy–model agreement, this study provides the first constraint on the influence of Saharan greening on northern mid-latitudes, opening new opportunities for understanding MH climate anomalies in regions such as North America and Eurasia.