Votre recherche
Résultats 21 ressources
-
In the context of global warming, the Clausius–Clapeyron (CC) relationship has been widely used as an indicator of the evolution of the precipitation regime, including daily and sub-daily extremes. This study aims to verify the existence of links between precipitation extremes and 2 m air temperature for the Ottawa River Basin (ORB, Canada) over the period 1981–2010, applying an exponential relationship between the 99th percentile of precipitation and temperature characteristics. Three simulations of the Canadian Regional Climate Model version 5 (CRCM5), at three different resolutions (0.44°, 0.22°, and 0.11°), one simulation using the recent CRCM version 6 (CRCM6) at “convection-permitting” resolution (2.5 km), and two reanalysis products (ERA5 and ERA5-Land) were used to investigate the CC scaling hypothesis that precipitation increases at the same rate as the atmospheric moisture-holding capacity (i.e., 6.8%/°C). In general, daily precipitation follows a lower rate of change than the CC scaling with median values between 2 and 4%/°C for the ORB and with a level of statistical significance of 5%, while hourly precipitation increases faster with temperature, between 4 and 7%/°C. In the latter case, rates of change greater than the CC scaling were even up to 10.2%/°C for the simulation at 0.11°. A hook shape is observed in summer for CRCM5 simulations, near the 20–25 °C temperature threshold, where the 99th percentile of precipitation decreases with temperature, especially at higher resolution with the CRCM6 data. Beyond the threshold of 20 °C, it appears that the atmospheric moisture-holding capacity is not the only determining factor for generating precipitation extremes. Other factors need to be considered, such as the moisture availability at the time of the precipitation event, and the presence of dynamical mechanisms that increase, for example, upward vertical motion. As mentioned in previous studies, the applicability of the CC scaling should not be generalised in the study of precipitation extremes. The time and spatial scales and season are also dependent factors that must be taken into account. In fact, the evolution of precipitation extremes and temperature relationships should be identified and evaluated with very high spatial resolution simulations, knowing that local temperature and regional physiographic features play a major role in the occurrence and intensity of precipitation extremes. As precipitation extremes have important effects on the occurrence of floods with potential deleterious damages, further research needs to explore the sensitivity of projections to resolution with various air temperature and humidity thresholds, especially at the sub-daily scale, as these precipitation types seem to increase faster with temperature than with daily-scale values. This will help to develop decision-making and adaptation strategies based on improved physical knowledge or approaches and not on a single assumption based on CC scaling.
-
Polar lows (PLs) are maritime mesoscale cyclones associated with severe weather. They develop during marine cold air outbreaks near coastlines and the sea ice edge. Unfortunately, our knowledge about the mechanisms leading to PL development is still incomplete. This study aims to provide a detailed analysis of the development mechanisms of a PL that formed over the Norwegian Sea on 25 March 2019 using the output of a simulation with the sixth version of the Canadian Regional Climate Model (CRCM6/GEM4), a convection-permitting model. First, the life cycle of the PL is described and the vertical wind shear environment is analysed. Then, the horizontal wind divergence and the baroclinic conversion term are computed, and a surface pressure tendency equation is developed. In addition, the roles of atmospheric static stability, latent heat release, and surface heat and moisture fluxes are explored. The results show that the PL developed in a forward-shear environment and that moist baroclinic instability played a major role in its genesis and intensification. Baroclinic instability was initially only present at low levels of the atmosphere, but later extended upward until it reached the mid-troposphere. Whereas the latent heat of condensation and the surface heat fluxes also contributed to the development of the PL, convective available potential energy and barotropic conversion do not seem to have played a major role in its intensification. In conclusion, this study shows that a convection-permitting model simulation is a powerful tool to study the details of the structure of PLs, as well as their development mechanisms.
-
Background: Although floods may have important respiratory health impacts, few studies have examined this issue. This study aims to document the long-term impacts of the spring floods of 2019 in Quebec by (1) describing the population affected by the floods; (2) assessing the impacts on the respiratory system according to levels of exposure; and (3) determining the association between stressors and respiratory health. Methods: A population health survey was carried out across the six most affected regions 8–10 months post-floods. Data were collected on self-reported otolaryngology (ENT) and respiratory symptoms, along with primary and secondary stressors. Three levels of exposure were examined: flooded, disrupted and unaffected. Results: One in ten respondents declared being flooded and 31.4% being disrupted by the floods. Flooded and disrupted participants reported significantly more ENT symptoms (adjusted odds ratio (aOR): 3.18; 95% CI: 2.45–4.14; aOR: 1.76; 95% CI: 1.45–2.14) and respiratory symptoms (aOR: 3.41; 95% CI: 2.45–4.75; aOR: 1.45; 95% CI: 1.10–1.91) than the unaffected participants. All primary stressors and certain secondary stressors assessed were significantly associated with both ENT and respiratory symptoms, but no “dose–response” gradient could be observed. Conclusion: This study highlights the long-term adverse effects of flood exposure on respiratory health.
-
Polar lows (PLs), which are intense maritime polar mesoscale cyclones, are associated with severe weather conditions. Due to their small size and rapid development, PL forecasting remains a challenge. Convection-permitting models are adequate to forecast PLs since, compared to coarser models, they provide a better representation of convection as well as surface and near-surface processes. A PL that formed over the Norwegian Sea on 25 March 2019 was simulated using the convection-permitting Canadian Regional Climate Model version 6 (CRCM6/GEM4, using a grid mesh of 2.5 km) driven by the reanalysis ERA5. The objectives of this study were to quantify the impact of the initial conditions on the simulation of the PL, and to assess the skill of the CRCM6/GEM4 at reproducing the PL. The results show that the skill of the CRCM6/GEM4 at reproducing the PL strongly depends on the initial conditions. Although in all simulations the synoptic environment is favourable for PL development, with a strong low-level temperature gradient and an upper-level through, only the low-level atmospheric fields of three of the simulations lead to PL development through baroclinic instability. The two simulations that best captured the PL represent a PL deeper than the observed one, and they show higher temperature mean bias compared to the other simulations, indicating that the ocean surface fluxes may be too strong. In general, ERA5 has more skill than the simulations at reproducing the observed PL, but the CRCM6/GEM4 simulation with initialisation time closer to the genesis time of the PL reproduces quite well small scale features as low-level baroclinic instability during the PL development phase.
-
Abstract Atmospheric blockings are generally associated with large-scale high-pressure systems that interrupt west-to-east atmospheric flow in mid and high latitudes. Blockings cause several days of quasi-stationary weather conditions, and therefore can result in monthly or seasonal climate anomalies and extreme weather events on the affected regions. In this paper, the long-term coupled CERA-20C reanalysis data from 1901 to 2010 are used to evaluate the links between blocking events over the North Atlantic north of 35° N, and atmospheric and oceanic modes of climate variability on decadal time scales. This study indicates more frequent and longer lasting blocking events than previous studies using other reanalyses products. A strong relationship was found between North Atlantic blocking events and North Atlantic Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO) and Baffin Island–West Atlantic (BWA) indices, in fall, winter and spring. More blocking events occur during the negative phases of the NAO index and positive phases of the BWA mode. In some situations, the BWA patterns provide clearer links with the North Atlantic blocking occurrence than with the NAO alone. The correlation between the synchronous occurrences of AMO and blocking is generally weak, although it does increase for a lag of about 6–10 years. Convergent cross mapping (CCM) furthermore demonstrates a significant two-way causal effect between blocking occurrences and the NAO and BWA indices. Finally, while we find no significant trends in blocking frequencies over the last 110 years in the Northern Hemisphere, these events become longer lasting in summer and fall, and more intense in spring in the North Atlantic.
-
The paper describes the development of predictive equations of windthrow for five tree species based on remote sensing of wind-affected stands in southwestern New Brunswick (NB). The data characterises forest conditions before, during and after the passing of extratropical cyclone Arthur, July 4–5, 2014. The five-variable logistic function developed for balsam fir (bF) was validated against remote-sensing-acquired windthrow data for bF-stands affected by the Christmas Mountains windthrow event of November 7, 1994. In general, the prediction of windthrow in the area agreed fairly well with the windthrow sites identified by photogrammetry. The occurrence of windthrow in the Christmas Mountains was prominent in areas with shallow soils and prone to localised accelerations in mean and turbulent airflow. The windthrow function for bF was subsequently used to examine the future impact of windthrow under two climate scenarios (RCP’s 4.5 and 8.5) and species response to local changes anticipated with global climate change, particularly with respect to growing degree-days and soil moisture. Under climate change, future windthrow in bF stands (2006–2100) is projected to be modified as the species withdraws from the high-elevation areas and NB as a whole, as the climate progressively warms and precipitation increases, causing the growing environment of bF to deteriorate.
-
Precipitation and temperature are among major climatic variables that are used to characterize extreme weather events, which can have profound impacts on ecosystems and society. Accurate simulation of these variables at the local scale is essential to adapt urban systems and policies to future climatic changes. However, accurate simulation of these climatic variables is difficult due to possible interdependence and feedbacks among them. In this paper, the concept of copulas was used to model seasonal interdependence between precipitation and temperature. Five copula functions were fitted to grid (approximately 10 km × 10 km) climate data from 1960 to 2013 in southern Ontario, Canada. Theoretical and empirical copulas were then compared with each other to select the most appropriate copula family for this region. Results showed that, of the tested copulas, none of them consistently performed the best over the entire region during all seasons. However, Gumbel copula was the best performer during the winter season, and Clayton performed best in the summer. More variability in terms of best copula was found in spring and fall seasons. By examining the likelihoods of concurrent extreme temperature and precipitation periods including wet/cool in the winter and dry/hot in the summer, we found that ignoring the joint distribution and confounding impacts of precipitation and temperature lead to the underestimation of occurrence of probabilities for these two concurrent extreme modes. This underestimation can also lead to incorrect conclusions and flawed decisions in terms of the severity of these extreme events.
-
Abstract The contraction of species range is one of the most significant symptoms of biodiversity loss worldwide. While anthropogenic activities and habitat alteration are major threats for several species, climate change should also be considered. For species at risk, differentiating the effects of human disturbances and climate change on past and current range transformations is an important step towards improved conservation strategies. We paired historical range maps with global atmospheric reanalyses from different sources to assess the potential effects of recent climate change on the observed northward contraction of the range of boreal populations of woodland caribou ( Rangifer tarandus caribou ) in Quebec (Canada) since 1850. We quantified these effects by highlighting the discrepancies between different southern limits of the caribou's range (used as references) observed in the past and reconstitutions obtained through the hindcasting of the climate conditions within which caribou are currently found. Hindcasted southern limits moved ~105 km north over time under all reanalysis datasets, a trend drastically different from the ~620 km reported for observed southern limits since 1850. The differences in latitudinal shift through time between the observed and hindcasted southern limits of distribution suggest that caribou range recession should have been only 17% of what has been observed since 1850 if recent climate change had been the only disturbance driver. This relatively limited impact of climate reinforces the scientific consensus stating that caribou range recession in Quebec is mainly caused by anthropogenic drivers (i.e. logging, development of the road network, agriculture, urbanization) that have modified the structure and composition of the forest over the past 160 years, paving the way for habitat‐mediated apparent competition and overharvesting. Our results also call for a reconsideration of past ranges in models aiming at projecting future distributions, especially for endangered species.
-
Background: Few studies have explored how vector control interventions may modify associations between environmental factors and malaria. Methods: We used weekly malaria cases reported from six public health facilities in Uganda. Environmental variables (temperature, rainfall, humidity, and vegetation) were extracted from remote sensing sources. The non-linearity of environmental variables was investigated, and negative binomial regression models were used to explore the influence of indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) on associations between environmental factors and malaria incident cases for each site as well as pooled across the facilities, with or without considering the interaction between environmental variables and vector control interventions. Results: An average of 73.3 weekly malaria cases per site (range: 0–597) occurred between 2010 and 2018. From the pooled model, malaria risk related to environmental variables was reduced by about 35% with LLINs and 63% with IRS. Significant interactions were observed between some environmental variables and vector control interventions. There was site-specific variability in the shape of the environment–malaria risk relationship and in the influence of interventions (6 to 72% reduction in cases with LLINs and 43 to 74% with IRS). Conclusion: The influence of vector control interventions on the malaria–environment relationship need to be considered at a local scale in order to efficiently guide control programs.
-
Abstract Studies have estimated the impact of the environment on malaria incidence although few have explored the differential impact due to malaria control interventions. Therefore, the objective of the study was to evaluate the effect of indoor residual spraying (IRS) on the relationship between malaria and environment (i.e. rainfall, temperatures, humidity, and vegetation) using data from a dynamic cohort of children from three sub-counties in Uganda. Environmental variables were extracted from remote sensing sources and averaged over different time periods. General linear mixed models were constructed for each sub-counties based on a log-binomial distribution. The influence of IRS was analysed by comparing marginal effects of environment in models adjusted and unadjusted for IRS. Great regional variability in the shape (linear and non-linear), direction, and magnitude of environmental associations with malaria risk were observed between sub-counties. IRS was significantly associated with malaria risk reduction (risk ratios vary from RR = 0.03, CI 95% [0.03–0.08] to RR = 0.35, CI95% [0.28–0.42]). Model adjustment for this intervention changed the magnitude and/or direction of environment-malaria associations, suggesting an interaction effect. This study evaluated the potential influence of IRS in the malaria-environment association and highlighted the necessity to control for interventions when they are performed to properly estimate the environmental influence on malaria. Local models are more informative to guide intervention program compared to national models.
-
Purpose The current pandemic and ongoing climate risks highlight the limited capacity of various systems, including health and social ones, to respond to population-scale and long-term threats. Practices to reduce the impacts on the health and well-being of populations must evolve from a reactive mode to preventive, proactive and concerted actions beginning at individual and community levels. Experiences and lessons learned from the pandemic will help to better prevent and reduce the psychosocial impacts of floods, or other hydroclimatic risks, in a climate change context. Design/methodology/approach The present paper first describes the complexity and the challenges associated with climate change and systemic risks. It also presents some systemic frameworks of mental health determinants, and provides an overview of the different types of psychosocial impacts of disasters. Through various Quebec case studies and using lessons learned from past and recent flood-related events, recommendations are made on how to better integrate individual and community factors in disaster response. Findings Results highlight the fact that people who have been affected by the events are significantly more likely to have mental health problems than those not exposed to flooding. They further demonstrate the adverse and long-term effects of floods on psychological health, notably stemming from indirect stressors at the community and institutional levels. Different strategies are proposed from individual-centered to systemic approaches, in putting forward the advantages from intersectoral and multirisk researches and interventions. Originality/value The establishment of an intersectoral flood network, namely the InterSectoral Flood Network of Québec (RIISQ), is presented as an interesting avenue to foster interdisciplinary collaboration and a systemic view of flood risks. Intersectoral work is proving to be a major issue in the management of systemic risks, and should concern communities, health and mental health professionals, and the various levels of governance. As climate change is called upon to lead to more and more systemic risks, close collaboration between all the areas concerned with the management of the factors of vulnerability and exposure of populations will be necessary to respond effectively to damages and impacts (direct and indirect) linked to new meteorological and compound hazards. This means as well to better integrate the communication managers into the risk management team.
-
Abstract Many studies have projected malaria risks with climate change scenarios by modelling one or two environmental variables and without the consideration of malaria control interventions. We aimed to predict the risk of malaria with climate change considering the influence of rainfall, humidity, temperatures, vegetation, and vector control interventions (indoor residual spraying (IRS) and long-lasting insecticidal nets (LLIN)). We used negative binomial models based on weekly malaria data from six facility-based surveillance sites in Uganda from 2010–2018, to estimate associations between malaria, environmental variables and interventions, accounting for the non-linearity of environmental variables. Associations were applied to future climate scenarios to predict malaria distribution using an ensemble of Regional Climate Models under two Representative Concentration Pathways (RCP4.5 and RCP8.5). Predictions including interaction effects between environmental variables and interventions were also explored. The results showed upward trends in the annual malaria cases by 25% to 30% by 2050s in the absence of intervention but there was great variability in the predictions (historical vs RCP 4.5 medians [Min–Max]: 16,785 [9,902–74,382] vs 21,289 [11,796–70,606]). The combination of IRS and LLIN, IRS alone, and LLIN alone would contribute to reducing the malaria burden by 76%, 63% and 35% respectively. Similar conclusions were drawn from the predictions of the models with and without interactions between environmental factors and interventions, suggesting that the interactions have no added value for the predictions. The results highlight the need for maintaining vector control interventions for malaria prevention and control in the context of climate change given the potential public health and economic implications of increasing malaria in Uganda.
- 1
- 2