Votre recherche
Résultats 2 ressources
-
Abstract To evaluate the present sea ice changes in a longer‐term perspective, the knowledge of sea ice variability on preindustrial and geological time scales is essential. For the interpretation of proxy reconstructions it is necessary to understand the recent signals of different sea ice proxies from various regions. We present 260 new sediment surface samples collected in the (sub‐)Arctic Oceans that were analyzed for specific sea ice (IP 25 ) and open‐water phytoplankton biomarkers (brassicasterol, dinosterol, and highly branched isoprenoid [HBI] III). This new biomarker data set was combined with 615 previously published biomarker surface samples into a pan‐Arctic database. The resulting pan‐Arctic biomarker and sea ice index (PIP 25 ) database shows a spatial distribution correlating well with the diverse modern sea ice concentrations. We find correlations of P B IP 25 , P D IP 25 , and P III IP 25 with spring and autumn sea ice concentrations. Similar correlations with modern sea ice concentrations are observed in Baffin Bay. However, the correlations of the PIP 25 indices with modern sea ice concentrations differ in Fram Strait from those of the (sub‐)Arctic data set, which is likely caused by region‐specific differences in sea ice variability, nutrient availability, and other environmental conditions. The extended (sea ice) biomarker database strengthens the validity of biomarker sea ice reconstructions in different Arctic regions and shows how different sea ice proxies combined may resolve specific seasonal sea ice conditions. , Key Points IP 25 provides information about modern sea ice cover on a (sub‐)Arctic‐wide scale All PIP 25 indices correlate well with spring and autumn sea ice concentrations on a (sub‐)Arctic‐wide scale The combination of biomarker data and dinoflagellate cysts may yield an approach to reconstruct sea ice conditions during different seasons
-
Abstract Arctic sea ice is a critical component of the climate system, known to influence ocean circulation, earth’s albedo, and ocean–atmosphere heat and gas exchange. Current developments in the use of IP 25 (a sea ice proxy with 25 carbon atoms only synthesized by Arctic sea ice diatoms) have proven it to be a suitable proxy for paleo-sea ice reconstructions over hundreds of thousands to even millions of years. In the NE Baffin Bay, off NW Greenland, Melville Bugt is a climate-sensitive region characterized by strong seasonal sea ice variability and strong melt-water discharge from the Greenland Ice Sheet (GIS). Here, we present a centennial-scale resolution Holocene sea ice record, based on IP 25 and open-water phytoplankton biomarkers (brassicasterol, dinosterol and HBI III) using core GeoB19927-3 (73° 35.26′ N, 58° 05.66′ W). Seasonal to ice-edge conditions near the core site are documented for most of the Holocene period with some significant variability. In the lower-most part, a cold interval characterized by extensive sea ice cover and very low local productivity is succeeded by an interval (~ 9.4–8.5 ka BP) with reduced sea ice cover, enhanced GIS spring melting, and strong influence of the West Greenland Current (WGC). From ~ 8.5 until ~ 7.8 ka BP, a cooling event is recorded by ice algae and phytoplankton biomarkers. They indicate an extended sea ice cover, possibly related to the opening of Nares Strait, which may have led to an increased influx of Polar Water into NE-Baffin Bay. The interval between ~ 7.8 and ~ 3.0 ka BP is characterized by generally reduced sea ice cover with millennial-scale variability of the (late winter/early spring) ice-edge limit, increased open-water conditions (polynya type), and a dominant WGC carrying warm waters at least as far as the Melville Bugt area. During the last ~ 3.0 ka BP, our biomarker records do not reflect the late Holocene ‘Neoglacial cooling’ observed elsewhere in the Northern Hemisphere, possibly due to the persistent influence of the WGC and interactions with the adjacent fjords. Peaks in HBI III at about ~ 2.1 and ~ 1.3 ka BP, interpreted as persistent ice-edge situations, might correlate with the Roman Warm Period (RWP) and Medieval Climate Anomaly (MCA), respectively, in-phase with the North Atlantic Oscillation (NAO) mode. When integrated with marine and terrestrial records from other circum-Baffin Bay areas (Disko Bay, the Canadian Arctic, the Labrador Sea), the Melville Bugt biomarker records point to close ties with high Arctic and Northern Hemispheric climate conditions, driven by solar and oceanic circulation forcings.