Votre recherche
Résultats 6 ressources
-
Abstract Increased temperature will result in longer, more frequent, and more intense heat waves. Changes in temperature variability have been deemed necessary to account for future heat wave characteristics. However, this has been quantified only in Europe and North America, while the rest of the globe remains unexplored. Using late century global climate projections, we show that annual mean temperature increases is the key factor defining heat wave changes in most regions. We find that commonly studied areas are an exception rather than the standard and the mean climate change signal generally outweighs any influence from variability changes. More importantly, differences in warming across seasons are responsible for most of the heat wave changes and their consideration relegates the contribution of variability to a marginal role. This reveals that accurately capturing mean seasonal changes is crucial to estimate future heat waves and reframes our interpretation of future temperature extremes. , Key Points The influence of projected temperature variability changes on future heat waves varies across the globe Future heat waves are primarily controlled by annual mean changes, except in Europe and North America Mean seasonal warming is responsible for over 95% of projected heat wave changes in most region
-
Abstract This study evaluates the added value in the representation of surface climate variables from an ensemble of regional climate model (RCM) simulations by comparing the relative skill of the RCM simulations and their driving data over a wide range of RCM experimental setups and climate statistics. The methodology is specifically designed to compare results across different variables and metrics, and it incorporates a rigorous approach to separate the added value occurring at different spatial scales. Results show that the RCMs' added value strongly depends on the type of driving data, the climate variable, and the region of interest but depends rather weakly on the choice of the statistical measure, the season, and the RCM physical configuration. Decomposing climate statistics according to different spatial scales shows that improvements are coming from the small scales when considering the representation of spatial patterns, but from the large‐scale contribution in the case of absolute values. Our results also show that a large part of the added value can be attained using some simple postprocessing methods. , Key Points A rigorous methodology that allows evaluating the overall benefits of high‐resolution simulations The most reliable source of added value is the better representation of the spatial variability Substantial added value can also be attained using simple postprocessing methods
-
Abstract The east coast of Australia is regularly influenced by midlatitude cyclones known as East Coast Lows. These form in a range of synoptic situations and are both a cause of severe weather and an important contributor to water security. This paper presents the first projections of future cyclone activity in this region using a regional climate model ensemble, with the use of a range of cyclone identification methods increasing the robustness of results. While there is considerable uncertainty in projections of cyclone frequency during the warm months, there is a robust agreement on a decreased frequency of cyclones during the winter months, when they are most common in the current climate. However, there is a potential increase in the frequency of cyclones with heavy rainfall and those closest to the coast and accordingly those with potential for severe flooding. , Key Points Winter cyclones are projected to decrease on the Australian east coast Cyclones associated with heavy rainfall may increase in frequency Projections of warm season cyclones remain uncertain