Votre recherche
Résultats 20 ressources
-
ABSTRACT High‐resolution reanalyses offer the potential to improve our understanding of midlatitude cyclones, particularly smaller‐scale systems and those with complex structures. However, previous studies have demonstrated large variations in the frequency and characteristics of Australian midlatitude cyclones between reanalyses when using their native resolution. In this paper we use satellite observations of winds and rainfall in order to evaluate the ability of the ERA‐Interim, JRA55, MERRA and CFSR reanalyses to reproduce Australian east coast cyclones. The MERRA reanalysis produces a large number of erroneous small‐scale lows without cyclonic wind patterns using a simple pressure‐difference‐based cyclone identification and tracking method. Consequently, we recommend the ERA‐Interim reanalysis when using such methods, or applying more complex tracking methods that are able to compensate for these issues.
-
Abstract Increased temperature will result in longer, more frequent, and more intense heat waves. Changes in temperature variability have been deemed necessary to account for future heat wave characteristics. However, this has been quantified only in Europe and North America, while the rest of the globe remains unexplored. Using late century global climate projections, we show that annual mean temperature increases is the key factor defining heat wave changes in most regions. We find that commonly studied areas are an exception rather than the standard and the mean climate change signal generally outweighs any influence from variability changes. More importantly, differences in warming across seasons are responsible for most of the heat wave changes and their consideration relegates the contribution of variability to a marginal role. This reveals that accurately capturing mean seasonal changes is crucial to estimate future heat waves and reframes our interpretation of future temperature extremes. , Key Points The influence of projected temperature variability changes on future heat waves varies across the globe Future heat waves are primarily controlled by annual mean changes, except in Europe and North America Mean seasonal warming is responsible for over 95% of projected heat wave changes in most region
-
Abstract The climate of the eastern seaboard of Australia is strongly influenced by the passage of low pressure systems over the adjacent Tasman Sea due to their associated precipitation and their potential to develop into extreme weather events. The aim of this study is to quantify differences in the climatology of east coast lows derived from the use of six global reanalyses. The methodology is explicitly designed to identify differences between reanalyses arising from differences in their horizontal resolution and their structure (type of forecast model, assimilation scheme, and the kind and number of observations assimilated). As a basis for comparison, reanalysis climatologies are compared with an observation-based climatology. Results show that reanalyses, specially high-resolution products, lead to very similar climatologies of the frequency, intensity, duration, and size of east coast lows when using spatially smoothed (about 300-km horizontal grid meshes) mean sea level pressure fields as input data. Moreover, at these coarse horizontal scales, monthly, interannual, and spatial variabilities appear to be very similar across the various reanalyses with a generally stronger agreement between winter events compared with summer ones. Results also show that, when looking at cyclones using reanalysis data at their native resolution (approaching 50-km grid spacing for the most recent products), uncertainties related to the frequency, intensity, and size of lows are very large and it is not clear which reanalysis, if any, gives a better description of cyclones. Further work is needed in order to evaluate the usefulness of the finescale information in modern reanalyses and to better understand the sources of their differences.
-
Abstract This study evaluates the added value in the representation of surface climate variables from an ensemble of regional climate model (RCM) simulations by comparing the relative skill of the RCM simulations and their driving data over a wide range of RCM experimental setups and climate statistics. The methodology is specifically designed to compare results across different variables and metrics, and it incorporates a rigorous approach to separate the added value occurring at different spatial scales. Results show that the RCMs' added value strongly depends on the type of driving data, the climate variable, and the region of interest but depends rather weakly on the choice of the statistical measure, the season, and the RCM physical configuration. Decomposing climate statistics according to different spatial scales shows that improvements are coming from the small scales when considering the representation of spatial patterns, but from the large‐scale contribution in the case of absolute values. Our results also show that a large part of the added value can be attained using some simple postprocessing methods. , Key Points A rigorous methodology that allows evaluating the overall benefits of high‐resolution simulations The most reliable source of added value is the better representation of the spatial variability Substantial added value can also be attained using simple postprocessing methods
-
Abstract The east coast of Australia is regularly influenced by midlatitude cyclones known as East Coast Lows. These form in a range of synoptic situations and are both a cause of severe weather and an important contributor to water security. This paper presents the first projections of future cyclone activity in this region using a regional climate model ensemble, with the use of a range of cyclone identification methods increasing the robustness of results. While there is considerable uncertainty in projections of cyclone frequency during the warm months, there is a robust agreement on a decreased frequency of cyclones during the winter months, when they are most common in the current climate. However, there is a potential increase in the frequency of cyclones with heavy rainfall and those closest to the coast and accordingly those with potential for severe flooding. , Key Points Winter cyclones are projected to decrease on the Australian east coast Cyclones associated with heavy rainfall may increase in frequency Projections of warm season cyclones remain uncertain
-
Abstract The Australian east coast low (ECL) is both a major cause of damaging severe weather and an important contributor to rainfall and dam inflow along the east coast, and is of interest to a wide range of groups including catchment managers and emergency services. For this reason, several studies in recent years have developed and interrogated databases of east coast lows using a variety of automated cyclone detection methods and identification criteria. This paper retunes each method so that all yield a similar event frequency within the ECL region, to enable a detailed intercomparison of the similarities, differences, and relative advantages of each method. All methods are shown to have substantial skill at identifying ECL events leading to major impacts or explosive development, but the choice of method significantly affects both the seasonal and interannual variation of detected ECL numbers. This must be taken into consideration in studies on trends or variability in ECLs, with a subcategorization of ECL events by synoptic situation of key importance.
-
The Australian Alps are the highest mountain range in Australia, which are important for biodiversity, energy generation and winter tourism. Significant increases in temperature in the past decades has had a huge impact on biodiversity and ecosystem in this region. In this study, observed temperature is used to assess how temperature changed over the Australian Alps and surrounding areas. We also use outputs from two generations of NARCliM (NSW and Australian Regional Climate Modelling) to investigate spatial and temporal variation of future changes in temperature and its extremes. The results show temperature increases faster for the Australian Alps than the surrounding areas, with clear spatial and temporal variation. The changes in temperature and its extremes are found to be strongly correlated with changes in albedo, which suggests faster warming in cool season might be dominated by decrease in albedo resulting from future changes in natural snowfall and snowpack. The warming induced reduction in future snow cover in the Australian Alps will have a significant impact on this region.
-
Abstract Compound events (CEs) are weather and climate events that result from multiple hazards or drivers with the potential to cause severe socio-economic impacts. Compared with isolated hazards, the multiple hazards/drivers associated with CEs can lead to higher economic losses and death tolls. Here, we provide the first analysis of multiple multivariate CEs potentially causing high-impact floods, droughts, and fires. Using observations and reanalysis data during 1980–2014, we analyse 27 hazard pairs and provide the first spatial estimates of their occurrences on the global scale. We identify hotspots of multivariate CEs including many socio-economically important regions such as North America, Russia and western Europe. We analyse the relative importance of different multivariate CEs in six continental regions to highlight CEs posing the highest risk. Our results provide initial guidance to assess the regional risk of CE events and an observationally-based dataset to aid evaluation of climate models for simulating multivariate CEs.