Votre recherche
Résultats 2 ressources
-
Abstract Reanalyses have the potential to provide meteorological information in areas where few or no traditional observation records are available. The terrestrial branch of the water cycle of CFSR, MERRA, ERA-Interim, and NARR is examined over Quebec, Canada, for the 1979–2008 time period. Precipitation, evaporation, runoff, and water balance are studied using observed precipitation and streamflows, according to three spatial scales: 1) the entire province of Quebec, 2) five regions derived from a climate classification, and 3) 11 river basins. The results reveal that MERRA provides a relatively closed water balance, while a significant residual was found for the other three reanalyses. MERRA and ERA-Interim seem to provide the most reliable precipitation over the province. On the other hand, precipitation from CFSR and NARR do not appear to be particularly reliable, especially over southern Quebec, as they almost systematically showed the highest and the lowest values, respectively. Moreover, the partitioning of precipitation into evaporation and runoff from MERRA and NARR does not agree with what was expected, particularly over southern, central, and eastern Quebec. Despite the weaknesses identified, the ability of reanalyses to reproduce the terrestrial water cycle of the recent past (i.e., 1979–2008) remains globally satisfactory. Nonetheless, their potential to provide reliable information must be validated by comparing reanalyses directly with weather stations, especially in remote areas.
-
Abstract This paper investigates the potential of reanalyses as proxies of observed surface precipitation and temperature to force hydrological models. Three global atmospheric reanalyses (ERA-Interim, CFSR, and MERRA), one regional reanalysis (NARR), and one global meteorological forcing dataset obtained by bias-correcting ERA-Interim [Water and Global Change (WATCH) Forcing Data ERA-Interim (WFDEI)] were compared to one gridded observation database over the contiguous United States. Results showed that all temperature datasets were similar to the gridded observation over most of the United States. On the other hand, precipitation from all three global reanalyses was biased, especially in summer and winter in the southeastern United States. The regional reanalysis precipitation was closer to observations since it indirectly assimilates surface precipitation. The WFDEI dataset was generally less biased than the reanalysis datasets. All datasets were then used to force a global conceptual hydrological model on 370 watersheds of the Model Parameter Estimation Experiment (MOPEX) database. River flows were computed for each watershed, and results showed that the flows simulated using NARR and gridded observations forcings were very similar to the observed flows. The simulated flows forced by the global reanalysis datasets were also similar to the observations, except in the humid continental and subtropical climatic regions, where precipitation seasonality biases degraded river flow simulations. The WFDEI dataset led to better river flows than reanalysis in the humid continental and subtropical climatic regions but was no better than reanalysis—and sometimes worse—in other climatic zones. Overall, the results indicate that global reanalyses have good potential to be used as proxies to observations to force hydrological models, especially in regions with few weather stations.