Votre recherche
Résultats 5 ressources
-
The NA-ISD2ERA is a station-based gridded dataset of hourly 10-m wind speed, surface total precipitation, sea-level pressure, and 2-m air and dew point temperature observations interpolated on the regular 0.25° latitude-longitude ERA5 grid over North America for the 1990-2021 period. Station observations are from the Integrated Surface Database (ISD) developed by the National Centers for Environmental Information (NCEI) of the National Oceanic and Atmospheric Administration (NOAA) (Smith et al. 2011). It includes over 35,000 weather stations around the world of hourly to sub-hourly in situ observations for numerous variables such as wind speed, precipitation, sea-level pressure, air and dew point temperature. The NCEI ISD dataset is available at https://www.ncei.noaa.gov. ERA5 is the fifth generation of the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (Hersbach et al., 2020). Quality checks implemented in ISD are used to select reliable observations. For each ERA5 grid cell and at each hour, the data are interpolated by taking the nearest available ISD observation to the grid cell center that is located within the targeted grid cell.
-
The NAEC catalogue comprises information on extratropical cyclone (ETC) tracks in North America (20–80 N and 180-0W) from January 1979 to December 2020. The source data used to produce this dataset is obtained from the ECMWF ERA5 reanalysis at 1-hour spatial resolution and 0.25x0.25 degree spatial resolution. In addition to the location, time, and intensity, this dataset also includes ETC-associated impact variables such as the near-surface wind speed, wind gust, and precipitation, averaged using different radii around the ETC center. Both absolute and relative (to the local climatology) measures are provided. This catalogue provides useful information for the assessment of ETC-induced impacts over North America.
-
Abstract This study investigates the seasonality of near‐surface wind speeds associated with extratropical cyclones (ETCs) over northeastern North America using a global reanalysis data set during 1979–2020. As opposed to most studies that emphasize winter storms, ETCs during the fall exhibit significantly stronger 10‐m winds over this region due to the slightly stronger continental cyclones and significantly weaker low‐level stability during that time of the year. Also, ETCs favor inland lakes and Hudson Bay during the low‐ice‐content fall season, leading to lower surface roughness. Combining these results, we derive simple linear regressions to predict the 10‐m wind speed given three variables: 850‐hPa wind speed, low‐level Richardson number, and surface roughness length. This formula captures the observed seasonality and serves as a valuable tool for cyclone near‐surface wind risk assessment. , Plain Language Summary Extratropical cyclones can bring powerful winds that can cause severe damage to infrastructure. We find that cyclones with severe winds are the most frequent in the fall season over continental northeastern North America. Three reasons are found responsible: stronger continental cyclones, weaker low‐level atmospheric stability, and the lower surface roughness over lakes and Hudson Bay, where cyclones frequently occur in fall. A simple formula that can effectively assess the near‐surface wind speeds associated with cyclones is derived based on these results. , Key Points Extratropical‐cyclone‐associated 10‐m wind speeds are the strongest in the fall season over northeastern North America Besides stronger continental cyclones and 850‐hPa winds, weaker low‐level stability in fall favors stronger 10‐m wind speeds in this region Linear regression using 850‐hPa wind, Richardson number, and surface roughness well predicts cyclones' 10‐m wind speeds and seasonality
-
The biogeophysical effects of severe forestation are quantified using a new ensemble of regional climate simulations over North America and Europe. Following the protocol outlined for the Land-Use and Climate Across Scales (LUCAS) intercomparison project, two sets of simulations are compared, FOREST and GRASS, which respectively represent worlds where all vegetation is replaced by trees and grasses. Three regional climate models were run over North America. One of them, the Canadian Regional Climate Model (CRCM5), was also run over Europe in an attempt to bridge results with the original LUCAS ensemble, which was confined to Europe. Overall, the CRCM5 response to forestation reveals strong inter-continental similarities, including a pronounced wintertime and springtime warming concentrated over snow-masking evergreen forests. Crucially, these northern evergreen needleleaf forests populate lower, hence sunnier, latitudes in North America than in Europe. Snow masking reduces albedo similarly over both continents, but stronger insolation amplifies the net shortwave radiation and hence warming simulated over North America. In the summertime, CRCM5 produces a mixed response to forestation, with warming over northern needleleaf forests and cooling over southern broadleaf forests. The partitioning of the turbulent heat fluxes plays a major role in determining this response, but it is not robust across models over North America. Implications for the inter-continental transferability of the original LUCAS results are discussed.
-
The Australian Alps are the highest mountain range in Australia, which are important for biodiversity, energy generation and winter tourism. Significant increases in temperature in the past decades has had a huge impact on biodiversity and ecosystem in this region. In this study, observed temperature is used to assess how temperature changed over the Australian Alps and surrounding areas. We also use outputs from two generations of NARCliM (NSW and Australian Regional Climate Modelling) to investigate spatial and temporal variation of future changes in temperature and its extremes. The results show temperature increases faster for the Australian Alps than the surrounding areas, with clear spatial and temporal variation. The changes in temperature and its extremes are found to be strongly correlated with changes in albedo, which suggests faster warming in cool season might be dominated by decrease in albedo resulting from future changes in natural snowfall and snowpack. The warming induced reduction in future snow cover in the Australian Alps will have a significant impact on this region.