Accéder au contenu Accéder au menu principal Accéder à la recherche
Accéder au contenu Accéder au menu principal
UQAM logo
Page d'accueil de l'UQAM Étudier à l'UQAM Bottin du personnel Carte du campus Bibliothèques Pour nous joindre

Service des bibliothèques

Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
UQAM logo
Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • Bibliographie
  • Accueil
  1. Vitrine des bibliographies
  2. Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  3. Résultats
  • Accueil

Votre recherche

Réinitialiser la recherche

Aide

L’interface de recherche est composée de trois sections : Rechercher, Explorer et Résultats. Celles-ci sont décrites en détail ci-dessous.

Vous pouvez lancer une recherche aussi bien à partir de la section Rechercher qu’à partir de la section Explorer.

Rechercher

Cette section affiche vos critères de recherche courants et vous permet de soumettre des mots-clés à chercher dans la bibliographie.

  • Chaque nouvelle soumission ajoute les mots-clés saisis à la liste des critères de recherche.
  • Pour lancer une nouvelle recherche plutôt qu’ajouter des mots-clés à la recherche courante, utilisez le bouton Réinitialiser la recherche, puis entrez vos mots-clés.
  • Pour remplacer un mot-clé déjà soumis, veuillez d’abord le retirer en décochant sa case à cocher, puis soumettre un nouveau mot-clé.
  • Vous pouvez contrôler la portée de votre recherche en choisissant où chercher. Les options sont :
    • Partout : repère vos mots-clés dans tous les champs des références bibliographiques ainsi que dans le contenu textuel des documents disponibles.
    • Dans les auteurs ou contributeurs : repère vos mots-clés dans les noms d’auteurs ou de contributeurs.
    • Dans les titres : repère vos mots-clés dans les titres.
    • Dans tous les champs : repère vos mots-clés dans tous les champs des notices bibliographiques.
    • Dans les documents : repère vos mots-clés dans le contenu textuel des documents disponibles.
  • Vous pouvez utiliser les opérateurs booléens avec vos mots-clés :
    • ET : repère les références qui contiennent tous les termes fournis. Ceci est la relation par défaut entre les termes séparés d’un espace. Par exemple, a b est équivalent à a ET b.
    • OU : repère les références qui contiennent n’importe lequel des termes fournis. Par exemple, a OU b.
    • SAUF : exclut les références qui contiennent le terme fourni. Par exemple, SAUF a.
    • Les opérateurs booléens doivent être saisis en MAJUSCULES.
  • Vous pouvez faire des groupements logiques (avec les parenthèses) pour éviter les ambiguïtés lors de la combinaison de plusieurs opérateurs booléens. Par exemple, (a OU b) ET c.
  • Vous pouvez demander une séquence exacte de mots (avec les guillemets droits), par exemple "a b c". Par défaut la différence entre les positions des mots est de 1, ce qui signifie qu’une référence sera repérée si elle contient les mots et qu’ils sont consécutifs. Une distance maximale différente peut être fournie (avec le tilde), par exemple "a b"~2 permet jusqu’à un terme entre a et b, ce qui signifie que la séquence a c b pourrait être repérée aussi bien que a b.
  • Vous pouvez préciser que certains termes sont plus importants que d’autres (avec l’accent circonflexe). Par exemple, a^2 b c^0.5 indique que a est deux fois plus important que b dans le calcul de pertinence des résultats, tandis que c est de moitié moins important. Ce type de facteur peut être appliqué à un groupement logique, par exemple (a b)^3 c.
  • La recherche par mots-clés est insensible à la casse et les accents et la ponctuation sont ignorés.
  • Les terminaisons des mots sont amputées pour la plupart des champs, tels le titre, le résumé et les notes. L’amputation des terminaisons vous évite d’avoir à prévoir toutes les formes possibles d’un mot dans vos recherches. Ainsi, les termes municipal, municipale et municipaux, par exemple, donneront tous le même résultat. L’amputation des terminaisons n’est pas appliquée au texte des champs de noms, tels auteurs/contributeurs, éditeur, publication.

Explorer

Cette section vous permet d’explorer les catégories associées aux références.

  • Les catégories peuvent servir à affiner votre recherche. Cochez une catégorie pour l’ajouter à vos critères de recherche. Les résultats seront alors restreints aux références qui sont associées à cette catégorie.
  • Dé-cochez une catégorie pour la retirer de vos critères de recherche et élargir votre recherche.
  • Les nombres affichés à côté des catégories indiquent combien de références sont associées à chaque catégorie considérant les résultats de recherche courants. Ces nombres varieront en fonction de vos critères de recherche, de manière à toujours décrire le jeu de résultats courant. De même, des catégories et des facettes entières pourront disparaître lorsque les résultats de recherche ne contiennent aucune référence leur étant associées.
  • Une icône de flèche () apparaissant à côté d’une catégorie indique que des sous-catégories sont disponibles. Vous pouvez appuyer sur l’icône pour faire afficher la liste de ces catégories plus spécifiques. Par la suite, vous pouvez appuyer à nouveau pour masquer la liste. L’action d’afficher ou de masquer les sous-catégories ne modifie pas vos critères de recherche; ceci vous permet de rapidement explorer l’arborescence des catégories, si désiré.

Résultats

Cette section présente les résultats de recherche. Si aucun critère de recherche n’a été fourni, elle montre toute la bibliographie (jusqu’à 20 références par page).

  • Chaque référence de la liste des résultats est un hyperlien vers sa notice bibliographique complète. À partir de la notice, vous pouvez continuer à explorer les résultats de recherche en naviguant vers les notices précédentes ou suivantes de vos résultats de recherche, ou encore retourner à la liste des résultats.
  • Des hyperliens supplémentaires, tels que Consulter le document ou Consulter sur [nom d’un site web], peuvent apparaître sous un résultat de recherche. Ces liens vous fournissent un accès rapide à la ressource, des liens que vous trouverez également dans la notice bibliographique.
  • Le bouton Résumés vous permet d’activer ou de désactiver l’affichage des résumés dans la liste des résultats de recherche. Toutefois, activer l’affichage des résumés n’aura aucun effet sur les résultats pour lesquels aucun résumé n’est disponible.
  • Diverses options sont fournies pour permettre de contrôler l’ordonnancement les résultats de recherche. L’une d’elles est l’option de tri par Pertinence, qui classe les résultats du plus pertinent au moins pertinent. Le score utilisé à cette fin prend en compte la fréquence des mots ainsi que les champs dans lesquels ils apparaissent. Par exemple, si un terme recherché apparaît fréquemment dans une référence ou est l’un d’un très petit nombre de termes utilisé dans cette référence, cette référence aura probablement un score plus élevé qu’une autre où le terme apparaît moins fréquemment ou qui contient un très grand nombre de mots. De même, le score sera plus élevé si un terme est rare dans l’ensemble de la bibliographie que s’il est très commun. De plus, si un terme de recherche apparaît par exemple dans le titre d’une référence, le score de cette référence sera plus élevé que s’il apparaissait dans un champ moins important tel le résumé.
  • Le tri par Pertinence n’est disponible qu’après avoir soumis des mots-clés par le biais de la section Rechercher.
  • Les catégories sélectionnées dans la section Explorer n’ont aucun effet sur le tri par pertinence. Elles ne font que filtrer la liste des résultats.
Dans les auteurs ou contributeurs
  • "Di Luca, A."

Résultats 7 ressources

PertinenceDate décroissanteDate croissanteAuteur A-ZAuteur Z-ATitre A-ZTitre Z-A
Résumés
  • Olson, R., Evans, J., Di Luca, A., & Argüeso, D. (2016). The NARCliM project: model agreement and significance of climate projections. Climate Research, 69(3), 209–227. https://doi.org/10.3354/cr01403
    Consulter sur www.int-res.com
  • Cavicchia, L., Pepler, A., Dowdy, A., Evans, J., Di Luca, A., & Walsh, K. (2020). Future Changes in the Occurrence of Hybrid Cyclones: The Added Value of Cyclone Classification for the East Australian Low‐Pressure Systems. Geophysical Research Letters, 47(6), e2019GL085751. https://doi.org/10.1029/2019GL085751

    Abstract Several regions of the world, including the east coast of Australia, are characterized by the occurrence of low‐pressure systems with a range of different dynamical structures, including tropical, extratropical, and hybrid cyclones. Future changes in the occurrence of cyclones are better understood if storms are classified according to their dynamical structure. Therefore, we apply a classification of cyclones according to their cold‐core or warm‐core structure to an ensemble of regional climate model simulations. First, we show that historical simulations reproduce well the reanalysis results in terms of cyclone classification. We then show that once cyclone classification is applied, projections of future cyclone activity become more robust, including a decrease in the occurrence of both cold‐core and warm‐core cyclones. Finally, we show that in a warmer climate warm‐core hybrid cyclone activity could increase close to the coast, while the associated rainfall and wind are projected to increase. , Plain Language Summary Cyclones in the tropics derive their energy from the temperature difference between warm ocean waters and the atmosphere and their interior is warmer than the environment (warm core), while cyclones in the midlatitudes derive their energy from differences in the atmospheric temperature and density at different locations and their interior is colder than the environment (cold core). In subtropical regions both types of cyclone can form. Also in those regions cyclones known as hybrid cyclones form, with mixed tropical‐extratropical features, such as a partial lower tropospheric warm core and a partial upper tropospheric cold core. This study is focused on cyclones along the eastern coast of Australia. Here we show that dividing cyclones in different classes according to their thermal structure provides a better framework to interpret changes in cyclone activity at subtropical latitudes. This study has two main results. First, classifying cyclones adds value to climate projection robustness. A large number of models agree on the decrease in the occurrence of both cold‐core and warm‐core cyclones. The study also indicates increased occurrence of hybrid cyclones close to the Australian coast. Second, the study shows evidence of future changes in cyclone‐related impacts, such as an increase in the associated rainfall. , Key Points A physically based classification of hybrid cyclones is applied to an ensemble of regional climate model simulations The cyclone classification method adds value to the projections of future cyclone activity, making them more robust Results indicate future changes (2060–2079) toward more intense impacts associated with hybrid cyclones

    Consulter sur agupubs.onlinelibrary.wiley.com
  • Di Luca, A., Argüeso, D., Sherwood, S., & Evans, J. P. (2021). Evaluating Precipitation Errors Using the Environmentally Conditioned Intensity‐Frequency Decomposition Method. Journal of Advances in Modeling Earth Systems, 13(7), e2020MS002447. https://doi.org/10.1029/2020MS002447

    Abstract A fundamental issue when evaluating the simulation of precipitation is the difficulty of quantifying specific sources of errors and recognizing compensation of errors. We assess how well a large ensemble of high‐resolution simulations represents the precipitation associated with strong cyclones. We propose a framework to breakdown precipitation errors according to different dynamical (vertical velocity) and thermodynamical (vertically integrated water vapor) regimes and the frequency and intensity of precipitation. This approach approximates the error in the total precipitation of each regime as the sum of three terms describing errors in the large‐scale environmental conditions, the frequency of precipitation and its intensity. We show that simulations produce precipitation too often, that its intensity is too weak, that errors are larger for weak than for strong dynamical forcing and that biases in the vertically integrated water vapor can be large. Using the error breakdown presented above, we define four new error metrics differing on the degree to which they include the compensation of errors. We show that convection‐permitting simulations consistently improve the simulation of precipitation compared to coarser‐resolution simulations using parameterized convection, and that these improvements are revealed by our new approach but not by traditional metrics which can be affected by compensating errors. These results suggest that convection‐permitting models are more likely to produce better results for the right reasons. We conclude that the novel decomposition and error metrics presented in this study give a useful framework that provides physical insights about the sources of errors and a reliable quantification of errors. , Plain Language Summary The simulations of complex physical processes always entail various sources of errors. These errors can be of different sign and can consequently cancel each other out when using traditional performance metrics such as the bias error metric. We present a formal framework that allows us to approximate precipitation according to three terms that describe different aspects of the rainfall field including large‐scale environmental conditions and the frequency and intensity of rainfall. We apply the methodology to a large ensemble of high‐resolution simulations representing the precipitation associated with strong cyclones in eastern Australia. We show that simulations produce precipitation too often, with an intensity that is too weak leading to strong compensation. We further define new error metrics that explicitly quantify the degree of error compensation when simulating precipitation. We show that convection‐permitting simulations consistently improve the performance compared to coarser resolution simulations using parameterized convection and that these improvements are only revealed when using the new error metrics but are not apparent in traditional metrics (e.g., bias). , Key Points Multiple high‐resolution simulations produce precipitation too often with underestimated intensity leading to strong error compensation Errors in precipitation are quantified using novel metrics that prevent error compensation showing value compared with traditional metrics Convection permitting simulations outperform the representation of precipitation compared to simulations using parameterized convection

    Consulter sur agupubs.onlinelibrary.wiley.com
  • Evans, J. P., Argueso, D., Olson, R., & Di Luca, A. (2017). Bias-corrected regional climate projections of extreme rainfall in south-east Australia. Theoretical and Applied Climatology, 130(3–4), 1085–1098. https://doi.org/10.1007/s00704-016-1949-9
    Consulter sur link.springer.com
  • Ji, F., Evans, J., Teng, J., Scorgie, Y., Argüeso, D., & Di Luca, A. (2016). Evaluation of long-term precipitation and temperature Weather Research and Forecasting simulations for southeast Australia. Climate Research, 67(2), 99–115. https://doi.org/10.3354/cr01366
    Consulter sur www.int-res.com
  • Sérazin, G., Di Luca, A., Sen Gupta, A., Rogé, M., Jourdain, N. C., Argüeso, D., & Bull, C. Y. S. (2021). East Australian Cyclones and Air‐Sea Feedbacks. Journal of Geophysical Research: Atmospheres, 126(20), e2020JD034391. https://doi.org/10.1029/2020JD034391

    Abstract The importance of resolving mesoscale air‐sea interactions to represent cyclones impacting the East Coast of Australia, the so‐called East Coast Lows (ECLs), is investigated using the Australian Regional Coupled Model based on NEMO‐OASIS‐WRF (NOW) at resolution. The fully coupled model is shown to be capable of reproducing correctly relevant features such as the seasonality, spatial distribution and intensity of ECLs while it partially resolves mesoscale processes, such as air‐sea feedbacks over ocean eddies and fronts. The mesoscale thermal feedback (TFB) and the current feedback (CFB) are shown to influence the intensity of northern ECLs (north of ), with the TFB modulating the pre‐storm sea surface temperature (SST) by shifting ECL locations eastwards and the CFB modulating the wind stress. By fully uncoupling the atmospheric model of NOW, the intensity of northern ECLs is increased due to the absence of the cold wake that provides a negative feedback to the cyclone. The number of ECLs might also be affected by the air‐sea feedbacks but large interannual variability hampers significant results with short‐term simulations. The TFB and CFB modify the climatology of SST (mean and variability) but no direct link is found between these changes and those noticed in ECL properties. These results show that the representation of ECLs, mainly north of , depend on how air‐sea feedbacks are simulated. This is particularly important for atmospheric downscaling of climate projections as small‐scale SST interactions and the effects of ocean currents are not accounted for. , Plain Language Summary Air‐sea interactions occur at a variety of spatial scales, including those of the size of ocean eddies. Such interactions are partially resolved in the Australian Regional Coupled Model used to simulate the cyclones impacting the East Coast of Australia, the so‐called East Coast Lows (ECLs). The effect of different feedbacks between the ocean and the atmosphere, including those due to mechanical and thermal exchanges over ocean eddies, are tested on the properties of ECLs. Significant effects are found on the intensity of ECLs north of , with also potential effects on the number of ECLs. The air‐sea feedbacks modify the climatology of sea surface temperature, with no direct link to ECL changes. Such experiments eventually demonstrate that small‐scale air‐sea feedbacks may matter for representing current Australian climate and its change in the future. , Key Points High‐resolution regional coupled modeling can simulate key features of East Australian cyclones Cyclone intensity is sensitive to mechanical and thermal air‐sea feedbacks at mesoscales Coupled and atmosphere‐only models mainly differ in simulating cyclone properties north of

    Consulter sur agupubs.onlinelibrary.wiley.com
  • Flaounas, E., Di Luca, A., Drobinski, P., Mailler, S., Arsouze, T., Bastin, S., Beranger, K., & Lebeaupin Brossier, C. (2016). Cyclone contribution to the Mediterranean Sea water budget. Climate Dynamics, 46(3–4), 913–927. https://doi.org/10.1007/s00382-015-2622-1
    Consulter sur link.springer.com
RIS

Format recommandé pour la plupart des logiciels de gestion de références bibliographiques

BibTeX

Format recommandé pour les logiciels spécialement conçus pour BibTeX

Flux web personnalisé
Dernière mise à jour depuis la base de données : 28/05/2025 05:00 (UTC)

Explorer

Auteur·e·s

  • Di Luca, Alejandro (7)

Type de ressource

  • Article de revue (7)

Année de publication

  • Entre 2000 et 2025 (7)
    • Entre 2010 et 2019 (4)
      • 2016 (3)
      • 2017 (1)
    • Entre 2020 et 2025 (3)
      • 2020 (1)
      • 2021 (2)

Explorer

UQAM - Université du Québec à Montréal

  • Centre pour l’étude et la simulation du climat à l’échelle régionale (ESCER)
  • bibliotheques@uqam.ca

Accessibilité Web