Votre recherche
Résultats 2 ressources
-
Abstract A warmer climate impacts streamflows and these changes need to be quantified to assess future risk, vulnerability, and to implement efficient adaptation measures. The climate simulations from the fifth phase of the Coupled Model Intercomparison Project (CMIP5), which have been the basis of most such assessments over the past decade, are being gradually superseded by the more recent Coupled Model Intercomparison Project Phase 6 (CMIP6). Our study portrays the added value of the CMIP6 ensemble over CMIP5 in a first North America wide comparison using 3,107 catchments. Results show a reduced spread of the CMIP6 ensemble compared to the CMIP5 ensemble for temperature and precipitation projections. In terms of flow indicators, the CMIP6 driven hydrological projections result in a smaller spread of future mean and high flow values, except for mountainous areas. Overall, we assess that the CMIP6 ensemble provides a narrower band of uncertainty of future climate projections, bringing more confidence for hydrological impact studies. , Plain Language Summary Greenhouse gas emissions are causing the climate to warm significantly, which in turn impacts flows in rivers worldwide. To adapt to these changes, it is essential to quantify them and assess future risk and vulnerability. Climate models are the primary tools used to achieve this. The main data set that provides scientists with state‐of‐the‐art climate model simulations is known as the Coupled Model Intercomparison Project (CMIP). The fifth phase of that project (CMIP5) has been used over the past decade in multiple hydrological studies to assess the impacts of climate change on streamflow. The more recent sixth phase (CMIP6) has started to generate projections, which brings the following question: is it necessary to update the hydrological impact studies performed using CMIP5 with the new CMIP6 models? To answer this question, a comparison between CMIP5 and CMIP6 using 3,107 catchments over North America was conducted. Results show that there is less spread in temperature and precipitation projections for CMIP6. This translates into a smaller spread of future mean, high and low flow values, except for mountainous areas. Overall, we assess that using the CMIP6 data set would provide a more concerted range of future climate projections, leading to more confident hydrological impact studies. , Key Points A comparison of hydrological impacts using Coupled Model Intercomparison Project version 5 (CMIP5) and Coupled Model Intercomparison Project Phase 6 (CMIP6) ensembles is performed over 3,107 catchments in North America The CMIP6 ensembles provide a narrower band of uncertainty for hydrological indicators in the future It is recommended to update hydrological impact studies performed using CMIP5 with the CMIP6 ensemble
-
Abstract. Earth system processes exhibit complex patterns across time, as do the models that seek to replicate these processes. Model output may or may not be significantly related to observations at different times and on different frequencies. Conventional model diagnostics provide an aggregate view of model–data agreement, but usually do not identify the time and frequency patterns of model–data disagreement, leaving unclear the steps required to improve model response to environmental drivers that vary on characteristic frequencies. Wavelet coherence can quantify the times and timescales at which two time series, for example time series of models and measurements, are significantly different. We applied wavelet coherence to interpret the predictions of 20 ecosystem models from the North American Carbon Program (NACP) Site-Level Interim Synthesis when confronted with eddy-covariance-measured net ecosystem exchange (NEE) from 10 ecosystems with multiple years of available data. Models were grouped into classes with similar approaches for incorporating phenology, the calculation of NEE, the inclusion of foliar nitrogen (N), and the use of model–data fusion. Models with prescribed, rather than prognostic, phenology often fit NEE observations better on annual to interannual timescales in grassland, wetland and agricultural ecosystems. Models that calculated NEE as net primary productivity (NPP) minus heterotrophic respiration (HR) rather than gross ecosystem productivity (GPP) minus ecosystem respiration (ER) fit better on annual timescales in grassland and wetland ecosystems, but models that calculated NEE as GPP minus ER were superior on monthly to seasonal timescales in two coniferous forests. Models that incorporated foliar nitrogen (N) data were successful at capturing NEE variability on interannual (multiple year) timescales at Howland Forest, Maine. The model that employed a model–data fusion approach often, but not always, resulted in improved fit to data, suggesting that improving model parameterization is important but not the only step for improving model performance. Combined with previous findings, our results suggest that the mechanisms driving daily and annual NEE variability tend to be correctly simulated, but the magnitude of these fluxes is often erroneous, suggesting that model parameterization must be improved. Few NACP models correctly predicted fluxes on seasonal and interannual timescales where spectral energy in NEE observations tends to be low, but where phenological events, multi-year oscillations in climatological drivers, and ecosystem succession are known to be important for determining ecosystem function. Mechanistic improvements to models must be made to replicate observed NEE variability on seasonal and interannual timescales.